Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  informacyjne technologie kwantowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Informacyjne Technologie Kwantowe ITK obejmują komputing kwantowy, telekomunikację kwantową, oraz metrologię kwantową i synchronizację. Obszary te są ściśle powiązane ze sobą, gdyż bazują na jednym wspólnym fundamencie zjawisk kwantowych. Kwantowy kanał informacyjny i proces transmisji w nim informacji klasycznej i kwantowej jest rodzajem operacji kwantowej, analogicznej do tej która jest wykonywana w systemach komputingu kwantowego. W obu przypadkach fundamentem są zasoby kwantowe. Operacje kwantowe w warunkach rzeczywistych podlegają zakłóceniom wynikłym z istnienia wybiórczych kanałów dekoherencji i sprzężenia świata kwantowego z termodynamicznym środowiskiem makro. Stąd, tak chętnie techniki kwantowe korzystają z fotonów, ponieważ są one stosunkowo odporne na dekoherencję. Jedną z najbardziej obiecujących opcji budowy homogenicznych systemów kwantowych obejmujących komputing i teleinformatykę stanowi fotonika kwantowa, odmienna od fotoniki klasycznej. Nie jest to jednak obecnie metoda najprostsza. Na drodze realizacji takiego homogenicznego systemu konieczne są bada- nia, testy, innowacje i budowa funkcjonalnych urządzeń, systemów i aplikacji zapewniających odpowiedni poziom cyberbezpieczeństwa kwantowego. Przestawienie opcji rozwoju telekomunikacji i komputingu na kwanty wymaga koordynacji na poziomie globalnym, tutaj mówimy o poziomie europejskim, dużych programów badawczych, projektów wspomagających kluczowe kierunki rozwojowe, współdziałania z inicjatywami krajowymi i biznesowymi.
EN
Quantum Information Technologies QIT include quantum computing, quantum telecommunications, quantum metrology and synchronization. These areas are closely related to each other because they are based on one common foundation of quantum phenomena. The quantum information channel and the process of transmission of classical and quantum information in it is a kind of quantum operation, analogous to the one performed in quantum computing systems. In both cases, quantum resources are the foundation. Quantum operations in real conditions are subject to disturbances resulting from the existence of selective decoherence channels and the coupling of the quantum world with the thermodynamic macro environment. Hence, quantum techniques are so eager to use photons, because they are relatively resistant to decoherence. One of the most promising options for building homogeneous quantum systems involving computing and QIT is quantum photonics, which is different from classical photon- ics. However, this is currently not the simplest method. On the way to the implementation of such a homogeneous system, research, tests, innovations and the construction of functional devices, systems and applications ensuring an appropriate level of quantum cybersecurity are necessary. Switching telecommunications and computing development options to quanta requires coordination at the global level, here we are talking about the European level, large research programs, projects supporting key development directions, cooperation with national and business initiatives.
PL
Informacyjne technologie kwantowe ITK obejmują, z przymiotnikiem kwantowy, komputing, telekomunikację, czujniki, metrologię i synchronizację. Realizacja wszystkich tych głównych komponentów ITK dotyczy takich warstw jak architektura, technologia, budowa sprzętu, oraz kompatybilnego wielowarstwowego oprogramowania. Komputing kwantowy to, w warstwach sprzętowych i programistycznych, opanowanie technologii i techniki manipulacji kubitami fizycznymi i logicznymi, gospodarka zasobami kwantowymi, budowa procesorów, urządzeń obliczeniowych, rozwój systemów pośredniego etapu NISQ oraz w przyszłości efektywna budowa uniwersalnych komputerów. Termin „uniwersalny komputer kwantowy” lub szerzej „uniwersalny system kwantowy” jest tutaj rozumiany w sensie realizowalnego stopnia odporności lub tolerancji błędów kwantowych w systemie zdolnym do transmisji zasobów kwantowych, realizacji wzorcowych algorytmów kwantowych, np. Shora czy Groovera, dających przewagę nad transmisją i algorytmami klasycznymi. Telekomunikacja kwantowa to kanały kwantowe, nadajniki i odbiorniki, transmisja, węzły, wzmacniaki, pamięci, zwielokrotnianie, multipleksowanie, sieci, architektury, oprogramowanie, bezpieczeństwo, itp. Czujniki to wykorzystanie zjawisk kwantowych, w tym także urządzeń kubitowych do budowy znacznie czulszych urządzeń pomiarowych lokalnych, sieciowych, systemów teledetekcji, itp. Synchronizacja to wykorzystanie zjawisk subatomowych do tworzenia nowej, znacznie dokładniejszej, skali czasu i praktyczne wykorzystanie tej skali dla celów ITK i klasycznej ICT. Ta ogromna przestrzeń badawcza i techniczna podlega intensywnym procesom zagospodarowania społecznego i standaryzacji. Temu celowi służą w Europie coraz liczniejsze lokalne projekty krajowe, ale także różnego rodzaju, duże, wysokonakładowe, istotne społecznie, otwarte inicjatywy kwantowe, realizowane równolegle do analogicznych inicjatyw podejmowanych w USA, Japonii i Chinach. W Polsce konieczna jest znajomość i aktywne uczestnictwo w tych inicjatywach.
EN
QIT quantum information technologies (or Quantum ICT) include, with the adjective quantum, computing, telecommunications, sensors, metrology and synchronization. The implementation of all three main components of QIT concerns such layers as architecture, technology, hardware construction, and compatible multi-layered software. Quantum computing is, in the hardware and programming layers, mastering the technology and techniques of manipulating physical and logical qubits, the management of quantum resources, the construction of processors, computing devices, the development of NISQ intermediate stage systems and, in the future, the effective construction of universal computers. The term “universal quantum computer” or more broadly “universal quantum system” is understood here in the sense of a realizable degree of resistance or quantum error tolerance in a system capable of transmitting quantum resources, implementing standard quantum algorithms, e.g. Shor or Groover, giving an advantage over classical transmission and algorithms. Quantum telecommunications are quantum channels, transmitters and receivers, transmission, nodes, repeaters, memories, multiplexing and demultiplexing, networks, architectures, software, security, etc. Sensors are the use of quantum phenomena, including qubit devices to build much more sensitive local measuring devices, networks systems, remote sensing systems, etc. Synchronization is the use of subatomic phenomena to create a new, much more accurate time scale and the practical use of this scale for QIT and classical ICT purposes. This huge research and technical space is subject to intensive processes of social development and standardization. This goal is realized in Europe by increasingly numerous local national projects, but also various types of large, high-investment, socially relevant, open quantum initiatives, carried out in parallel to similar initiatives undertaken in the USA, Japan and China. In Poland, it is necessary to know and participate actively in these initiatives.
PL
Koncepcje realizacji węzłów sieci i komputingu kwantowego na bazie kuditów fotonowych są pod względem technicznym w początkowym etapie rozwoju, znacznie w tyle za technikami kubitowymi. Techniki kubitowe i kuditowe w przypadku fotonu są silnie skorelowane. Impuls rozwojowy fotoniczne techniki kubitowe otrzymały ze strony fotonicznych układów scalonych PIC i znacznego postępu w ich technologii. Sprawne logiczne fotoniczne kubitowe bramki kwantowe są realizowane przy pomocy liniowych układów mikro-fotonicznych. W tworzeniu topologii kubitowych układów bramkowych PIC wykorzystuje się właściwości teorii grafów. I jest to metoda tak skuteczna, że stosowany jest termin grafowa fotonika kwantowa. Grafowa teoria fotonicznych układów kwantowych jest rozszerzana na kudity. Możliwość taką zapewnia niezwykła elastyczność fotonu jako obiektu kwantowego, pojedynczego i klastrowanego, w postaci możliwości kształtowania jego stanów swobody i generacji stanów nieklasycznych. Kudit fotonowy poprzez swoją wielostronność i wielowymiarowość realizuje hipersplątanie w znacznie bogatszy sposób, jednak trudny do opanowania praktycznego. Naturalną metodą są próby zastosowania rozwiązań dobrze znanych w telekomunikacji i radioelektronice, czyli działania w domenach czasu, częstotliwości i przestrzeni. Działania te ujawniają fascynującą nieklasyczną naturę fotonu swobodnego, klastrowanego i hipersplątanego i potencjalnie uchylają drzwi do jego sprawnej funkcjonalizacji w postaci kuditu. Taka funkcjonalizacja nie będzie łatwa bo foton jest bardzo słabo reaktywny. Konieczne jest poszukiwanie metod rekompensujących.
EN
The concepts of network nodes implementation and quantum computing based on photon qudits are technically in the early stages of development, well behind qubit techniques. Photonic qubit and qudit technologies are strongly correlated. Photonic qubit techniques received a development impulse from photonic PIC integrated circuits and significant progress in their technology. Efficient logical photonic qubit quantum gates are implemented using linear micro-photonic circuits. The properties of graph theory are used in the creation of topologies of qubit PIC gate circuits. And this method is so effective that the term graph quantum photonics is used. The graph theory of photonic quantum systems is being extended to qudits. This possibility is ensured by the extraordinary flexibility of the photon as a quantum object, single and clustered, in the form of the possibility of shaping its states of freedom and generating non-classical states. The photon qudit, through its multipartition and multidimensionality, implements hyperentanglement in a much richer way, but difficult to master in practice. A natural method is to try to apply solutions well known in telecommunications and radioelectronics, i.e. actions in the domains of time, frequency and space. These activities reveal the fascinating non-classical nature of the free, clustered and hyperentangled photon and potentially open the door to its smart functionalization in the form of a qudit. Such functionalization will not be easy as a photon is hardly reactive. It is necessary to search for recompensation methods.
PL
Technologia kwantowa jest obszarem coraz skuteczniej funkcjonalizującym zjawiska mechaniki kwantowej, nie tylko jak to robiono dotychczas z sukcesem, czyli głównie poprzez inżynierię przerwy zabronionej. Epoka Quantum-1 dała nam układy scalone, lasery, czujniki, komputery, informatykę, telekomunikację światłowodową i satelitarną. W wielu obszarach Quantum-1 doszliśmy, lub za jakiś czas dojdziemy, do granic technologicznych. Świat naukowy zauważył możliwość dalszego, nie ewolucyjnego, ale skokowego rozwoju wymienionych technologii poprzez zmianę epoki na coś co dzisiaj nazywamy Quantum 2. Quantum 2 nie bazuje na przerwie zabronionej tak jak Quantum 1, ale usiłuje dowolnie manipulować pojedynczym izolowanym, a także grupą skorelowanych układów kwantowych. Za taką datę narodzin Quantum 2 uznaje się odkrycie przez Johna Stewarda Bella w 1964 roku nierówności i sformułowanie na jej podstawie prawa dotyczącego ścisłej granicy nielokalności kwantowej w układzie dwustronnym, lub jak dzisiaj mówimy dowodu splątania między Alicją i Bobem. J.S.Bell przedstawił możliwość prostej i ścisłej eksperymentalnej weryfikacji paradoksu EPR z roku 1934 poprzez statystyczny pomiar korelacji kwantowych. Nie od razu skonsumowano to genialne odkrycie. Pierwszy prosty eksperyment weryfikacyjny prawdziwość naruszenie nierówności wykonał zespół Johna Clausera w r. 1979 na podstawie wyprowadzonej w roku 1969 nierówności klasy Bella - CHSH. Pełny eksperyment, jednak bez unikania większości luk pomiarowych, wykonał po raz pierwszy zespół Alaina Aspecta w roku 1982. Zespół Antona Zeilingera wykonał wiele testów Bella także w skali kosmicznej, pokazał pierwszy teleportację kwantową i możliwość manipulacji splątaniem poprzez jego przełączanie między kubitami. Clauser, Aspect i Zeilinger otrzymali nagrodę Nobla z fizyki za te osiągnięcia w roku 2022. Stanowią one bramę wejściową do epoki Quantum 2 i podstawę rozwoju informacyjnych technologii kwantowych na fizycznej platformie fotoniki kwantowej.
EN
Quantum technology is an area that is increasingly functionalizing the phenomena of quantum mechanics, not only as it has been successfully done so far, i.e. mainly through the forbidden gap engineering. The Quantum-1 era gave us integrated circuits, lasers, sensors, computers, IT, fiber optic and satellite telecommunications. In many areas of Quantum-1, we have reached or will come to technological limits in some time. The scientific world has noticed the possibility of a further, not evolutionary, but leapfrog development of these technologies by changing the epoch to what we now call Quantum-2. Quantum-2 is not based on a forbidden band like Quantum-1, but tries to arbitrarily manipulate a single isolated as well as a group of correlated quantum systems. The birth date of Quantum-2 is considered to be the discovery by John Steward Bell in 1964 of inequality and the formulation of a law on the strict limit of quantum nonlocality in a bilateral system, or as we speak today, the proof of entanglement between Alice and Bob. J.S.Bell presented the possibility of a simple and strict experimental verification of the EPR paradox from 1934 through the statistical measurement of quantum correlations. This brilliant discovery was not immediately consumed. The first simple experiment to verify the truth of the inequality was performed by John Clauser’s team in 1979 on the basis of the Bell-class CHSH inequality derived in 1969. The full experiment, but without avoiding all measurement loopholes, was first performed by Alain Aspect’s team in 1982. Anton Zeilinger’s team performed many Bell tests also on a cosmic scale, showed the first quantum teleportation and the possibility of manipulating entanglement by switching between qubits. Clauser, Aspect and Zeilinger were awarded the Nobel Prize in Physics for these achievements in 2022. They are the gateway to the Quantum-2 era and the basis for the development of quantum information technologies on the physical quantum photonics platform.
PL
Pod pojęciem technika kwantowa a w tym fotonika kwantowa rozumiemy tutaj elementy i układy, oraz metody i konstrukcje wykorzystywane w informacyjnych technologiach kwantowych nazywanych w literaturze dumnie i chyba jeszcze nieco na wyrost epoką Quantum 2.0. Niektóre z produktów epoki Q 2.0 są już na rynku. Można zamówić i kupić kwantowy grawimetr absolutny, kwantowy fotoniczny zegar atomowy dokładniejszy o co najmniej rząd wielkości od fontanny cezowej, a także można sobie samemu zbudować z dostępnych na rynku elementów swój komputer kwantowy elementarnej klasy NISQ. Elektronika testowa i kwantowe środowisko programistyczne ARTIQ i SINARA kosztują relatywnie niewiele, bo w wersji podstawowej zaledwie kilkanaście tysięcy Euro. Znacznie droższe jest serce kwantowe komputera NISQ w postaci np. zestawu pułapek jonowych wymagających krio-chłodzenia i precyzyjnego sterowania laserowego. Alternatywnie do obliczeń można także skorzystać z chmury kwantowej oferowanej publicznie przez niektóre największe firmy informatyczne. Fotonika kwantowa jest stosowana w niemal wszystkich rozwiązaniach informacyjnych technologii kwantowych. Wymaga specjalnego rodzaju źródeł i detektorów promieniowania optycznego, jednoczęstotliwościowych i jednofotonowych, splątujących fotony, generujących kubity, modulatorów, funkcjonalnych elementów nieliniowych jak kowerterów częstotliwości, fotonicznych układów scalonych, sprzęgaczy, światłowodów jednopolaryzacyjnych itp. W pewnej części rozwiązań można stosować klasyczne komponenty fotoniczne dla wysokiej jakości telekomunikacji światłowodowej. Artykuł opracowano głównie na podstawie raportu OSA-OIDA.
EN
By quantum technology, including quantum photonics, we understand here components and systems, as well as methods and constructions used in quantum information technologies, which in literature are called proudly, and perhaps even slightly exaggerated, the era of Quantum 2.0. Some of the Q 2.0 era products are already on the market. You can order and buy an absolute quantum gravimeter, a quantum photonic atomic clock more accurate at least an order of magnitude than a Caesium fountain, and you can also build your own elementary NISQ quantum computer from the components available on the market. Test electronics and quantum programming environment ARTIQ and SINARA cost relatively little, because in the basic version only several thousand Euro. The quantum heart of the NISQ computer is much more expensive, e.g. a set of ion traps that require cryo-cooling and precise laser control. Alternatively, you can also take advantage of the quantum cloud offered to the public by some of the largest IT companies. Quantum photonics is used in almost all information solutions of quantum technologies. It requires a special type of optical radiation sources and detectors, single-frequency and singlephoton, photon entangling, generating qubits, modulators, functional non-linear elements such as frequency converters, photonic integrated circuits, couplers, single-polarizing optical fibers, etc. Some quantum applications may use standard photonic components for high quality fiber optic communications. The paper was prepared using mainly OSA-OIDA report.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.