Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  inertial fusion
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawione są najnowsze osiągnięcia badań przeprowadzanych w eksperymencie laserowym PALS w Pradze (Prague Asterix Laser System) zrealizowanych przez zespół prof. dr. hab. Tadeusza Pisarczyka z Instytutu Fizyki i Laserowej Mikrosyntezy w Warszawie. W badaniach tych jako nowa efektywna diagnostyka wykorzystywana jest femtosekundowa polaro-interferometria, która została zaimplementowana dzięki zastosowaniu do oświetlenia układów diagnostycznych: 3-kadrowego interferometru i 2-kanałowego polar-interferometru, femtosekundowego lasera Ti:Sa o szerokości impulsu ok. 40 fs. Przedstawiono wybrane wyniki badań ilustrujące użyteczność femtosekundowej polaro-interferometrii w badaniach na PALS dotyczących: (i) udarowego zapłonu fuzji laserowej, (ii) nowej metody wytwarzania plazmy fotojonizacyjnej dla badań astrofizycznych oraz (iii) generacji wysokoenergetycznych jonów do zastosowań medycznych i radiografii.
EN
In the article the latest achievements of researches in the PALS experiment in Prague (Prague Asterix Laser System) carried out by a team of professor Tadeusz Pisarczyk from the Institute of Plasma Physics and Laser Microfusion in Warsaw are presented. In these studies, the femtosecond polaro-interferometry, as a new effective diagnostic is used, and which has been implemented thanks to irradiation diagnostic systems: 3-frame interferometer and 2-channel polaro-imterferometer by the Ti:Sa femtosecond diagnostic laser having a pulse duration of about 40 fs. The selected results are presented, which the usefulness of the femtosecond polaro-interferometry demonstrate for the studies on PALS connected with: (i) the shock ignition concept of the inertial fusion, (ii) the new method of the photoionized plasma creation for astrophysical researches and (iii) generation of high-energy ions for the medical and the radiography applications.
2
Content available Fusion 2050 : European and Polish Perspective
EN
Fusion, in all its varieties, is a very current subject of science and technology. The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly an aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050. The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion and plasma communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, etc. Construction of such research and industrial accelerator and tokomak infrastructure may have potentially a profound meaning for the development of science and technology in Poland.
PL
W wyniku egzotermicznej reakcji fuzji termojądrowej jądra deuteru i trytu łączą się i powstaje jądro helu, neutron i wydzielana jest znaczna energia (kinetyczna neutronów 14 MeV). Reakcja nuklidów DT nie jest najkorzystniejsza z punktu widzenia produkcji energii, ale jest najbardziej zaawansowana techniczne. Korzystniejsze byłyby prawdopodobnie reakcje aneutronowe, Unia Europejska, poprzez swoją agendę EURATOM, opracowała mapę drogową mającą prowadzić do opanowania i wprowadzenia komercyjnej energetyki termojądrowej w perspektywie 2050. Kamieniami milowymi na tej drodze są eksperymenty tokamakowe JET, ITER oraz DEMO i eksperyment neutronowy IFMIF. Jest nadzieja, że przy zaangażowaniu rządu oraz wszystkich środowisk krajowych uczonych z dziedziny fuzji, część z tej mapy drogowej mogła by być realizowana w naszym kraju. Infrastruktura budowana dla eksperymentów fuzyjnych może być wykorzystywana także do badań materiałowych, chemicznych, biomedycznych, związanych z ochroną środowiska, energetyką, bezpieczeństwem, itp. Budowa takiej akceleratorowej infrastruktury badawczej i przemysłowej miałaby wielkie znaczenie dla rozwoju nauki i przemysłu atomistycznego w Polsce.
EN
The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050. The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, etc. Construction of such research and industrial accelerator infrastructure may have potentially a profound meaning for the development of science and technology in Poland.
EN
This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities.
EN
In 2009, in Lawrence Livermore National Laboratory, USA, National Ignition Facility (NIF) - the largest thermonuclear fusion device ever made was launched. Its main part is a multi-beam laser whose energy in nanosecond pulse exceeds 1MJ (106 J). Its task is to compress DT fuel to the density over a few thousand times higher than that of solid-state DT and heat it to 100 millions of K degrees. In this case, the process of fuel compression and heating is realized in an indirect way - laser radiation (in UV range) is converted in the so-called hohlraum (1 cm cylinder with a spherical DT pellet inside) into very intense soft X radiation symmetrically illuminating DT pellet. For the first time ever, the fusion device's energetic parameters are sufficient for the achieving the ignition and self-sustained burn of thermonuclear fuel on a scale allowing for the generation of energy far bigger than that delivered to the fuel. The main purpose of the current experimental campaign on NIF is bringing about, within the next two-three years, a controlled thermonuclear 'big bang' in which the fusion energy will exceed the energy delivered by the laser at least ten times. The expected 'big bang' would be the culmination of fifty years of international efforts aiming at demonstrating both physical and technical feasibility of generating, in a controlled way, the energy from nuclear fusion in inertial confined plasma and would pave the way for practical realization of the laser-driven thermonuclear reactor. This paper briefly reviews the basic current concepts of laser fusion and main problems and challenges facing the research community dealing with this field. In particular, the conventional, central hot spot ignition approach to laser fusion is discussed together with the more recent ones - fast ignition, shock ignition and impact ignition fusion. The research projects directed towards building an experimental laser-driven thermonuclear reactor are presented as well.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.