Wszechświat funkcjonuje zgodnie z prawami fizyki, które tworzą sztywne relacje pomiędzy zjawiskami. Istniejący od wielu lat stan quasi równowagi został naruszony przez negatywne oddziaływanie zanieczyszczeń przemysłowych i komunalnych na środowisko naturalne. Rosnący poziom zanieczyszczeń stanowi zagrożenie dla Środowiska naturalnego a tym samym funkcjonowania człowieka oraz wszystkich organizmów żywych i dalszego rozwoju naszej cywilizacji. Jednym z racjonalnych rozwiązań w istniejącej sytuacji jest wykorzystanie wyników badań "bioniki", nauki, która bada struktury, materiały i procesy występujące w przyrodzie w celu wykorzystania wyników w dalszym rozwoju techniki. Należy podkreślić, że możliwy jest bionicznie inspirowany dynamiczny rozwój techniki i produkcji przemysłowej przy równoczesnym korzystnym oddziaływaniu na stan Środowiska naturalnego.
EN
The universe is ruled by the universal laws of physics creating fixed relations between the phenomena. This quasi balanced, well established state has been disturbed by the negative impact of the industrial and urban pollution on the Nature environment. The growing level of contamination has become a hazard for the nature environment and for all live creatures, threatening sustainable progress of our civilization. One rational solution comes to mind, making use of the bionic science which investigates structures, materials and processes taking place in the nature in order to utilize the obtained results for the technological progress. It should be emphasized that it is possible to achieve bionic-inspired progress in technology and the industrial production with simultaneous advantageous impact on the Nature environment.
The paper discusses the possibility of application of percolation theory to model the structure of materials in a virtual space. The designed models were transferred to real space using modern incremental manufacturing techniques like 3D printing. Studies of model materials of this type based on percolation theory are expected to provide more accurate knowledge of the problem, which is extremely important from the point of view of the properties of most construction materials. Reference of percolation phenomena to materials science is more and more frequently done in the design of various types of composite materials, such as e.g. conductive composites. In this study, the percolation theory has been used to design in microscale an optimum material through model analysis done in macroscale. Since studies of percolation in polycrystalline materials are difficult, and there are also some technical limitations imposed on the evaluation done in a volume of material, this phenomenon is usually examined in a simplified manner, which means that it is reduced only to statistical analysis of potential percolation with determination of its threshold value. To generate a potential structure based on percolation theory, popular computer programmes for solid modelling were used. Real shapes were conferred to the designed models using a widely known technique of 3D printing. It allows the production of parts in ABS material. The subject of the present study combines modern design techniques with modern manufacturing techniques, relating both to the fundamentals of materials science. Today's software tools enable creating more complex solids, while their transfer to reality allows better understanding of dependencies that exist in the structure of materials. The originality of this study consists in the art of creating new construction materials with planned properties. The article offers a new approach to the capabilities of scheduling modern engineering materials with the help of percolation theory.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.