Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  incremental
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Incremental sheet forming (ISF) has received tremendous attraction in industrial, academia and research segments due to its inherent advantages. To deploy ISF technology in the manufacturing sector, various aspects have to be addressed such as geometrical accuracy, non-homogenous thickness distribution, and process slowness. In this study, extensive experimental work was performed to satisfy the industrial requirements. The influence of forming parameters (step depth, forming wall angle and feed rate) was investigated to access the ISF feasibility at higher speeds when forming the AA5754-H22 aluminum alloy and DC04 steel. The surface roughness, thickness distribution, and microhardness tests were carried out for the samples, which were successfully formed at the higher levels of process parameters. These experimental results were obtained at different locations on the sheet after forming. The analysis has revealed that the possible reduction in the execution time is up to 84% faster for AA5754 H22 aluminum alloy and 74% in case of DC04 steel. In this way, the current study not only provides the necessary framework for the future development of ISF but also commercialization of this technology.
EN
From first-order incremental ΣΔ converters to controlled-oscillator-based converters, many ADC architectures are based on the continuous-time integration of the input signal. However, the accuracy of such converters cannot be properly estimated without establishing the impact of noise. In fact, noise is also integrated, resulting in a random error that is added to the measured value. Since drifting phenomena may make simulations and practical measurements unable to ensure longterm reliability of the converters, a theoretical tool is required. This paper presents a solution to compute the standard deviation of the noise-generated error in continuous-time integrator-based ADCs, under the assumption that a previous measure is used to calibrate the system. In addition to produce a realistic case, this assumption allows to handle a theoretical issue that made the problem not properly solvable. The theory is developed, the equations are solved in the cases of pure white noise, pure flicker noise and low-pass filtered white noise, and the implementation issues implied by the provided formulas are addressed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.