Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 103

Liczba wyników na stronie
first rewind previous Strona / 6 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  inżynieria tkankowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 6 next fast forward last
EN
In this article novel technological solutions for applying additive manufacturing technologies in the biomedical and biotechnological industry are showcased. The BioCloner Desktop (referred to as ‘Desktop’) is a miniaturised version of an industrial printer developed as part of a project regarding utilising additive manufacturing technologies for manufacturing of bioresorbable implants. In the years 2016-2019, the project was financed from EU resources (project number POIR.01.01.01-00-0044/16-00). During this project, industrial-sized solutions dedicated for medical and pharmaceutical applications were developed. The Desktop was developed as a way of expanding the possibilities of research and development in a standard biomedical laboratory. The size of the described printer allows it to be placed inside a laminar flow cabinet. The Desktop is a device which meets the growing need for multipurpose compact desktop bioprinters dedicated for research and development applications. Currently, commercially available laboratory-scale machines lack an open architecture, which puts boundaries on research. Miniaturisation of the BioCloner bioprinter did not sacrifice its key feature of supporting multitool print and convenience of construction for further specialisation. The BioCloner project, besides bioprinters, also includes dedicated slicing and printer control software. Thanks to its multiplatform compatibility, it is possible to easily increase the scale of production directly after the research process. The Desktop is equipped with printheads that facilitate multiple methods of 3D printing. From the most popular fused filament fabrication (FFF) to the versatile fused granulate fabrication (FGF) to highly specialised printheads for bioprinting, designed to dispense hydrogels via pressure extrusion. The printheads have also additional features required in the bioprinting process, such as UV crosslinking lights and temperature control (heating as well as cooling). In this article, key features of both the BioCloner Desktop bioprinter and the dedicated BioCloner 3D slicing-operating software are outlined. Its second part is a report on the bioprinter’s usage in the Biomedical Engineering Laboratory, named after E.J. Brzeziński, located at Faculty of Mechanical and Industrial Engineering of Warsaw University of Technology. During the study, hydrogel cell scaffolds for culturing WEHI-164 mouse fibroblasts were produced. The structures were obtained using a gelatin methacrylate (GelMa)-based commercially available bioink deposited directly into a cell culture vessel. The structures were fully crosslinked immediately after printing. All printed scaffolds supported cell proliferation. There were no observed signs of contamination, and the conducted field tests confirmed the assumed functionality of the BioCloner Desktop bioprinter.
PL
W artykule przedstawiono nowatorskie rozwiązania techniczne pozwalające na wykorzystanie technologii addytywnego wytwarzania w branżach biomedycznej i biotechnologicznej. BioCloner Desktop (dalej: „Desktop”) jest zminiaturyzowanym rozwiązaniem opracowanym w ramach trwającego od 2016 r. projektu BioCloner, mającego na celu wdrożenie technik przyrostowych w procesie produkcji implantów wchłanialnych. Projekt ten w latach 2016-2019 był finansowany ze środków UE (projekt POIR.01.01.01-00-0044/16-00 - Pierwsza polska biodrukarka dedykowana do implantów wchłanialnych - BioCloner). W ramach projektu BioCloner opracowano rozwiązania wielkogabarytowe przeznaczone do zastosowania w branży medycznej i farmaceutycznej. Desktop został opracowany z myślą o poszerzeniu możliwości prac badawczo-rozwojowych w typowym laboratorium biomedycznym. Wymiary drukarki BioCloner Desktop pozwalają na pracę w warunkach podwyższonej czystości oraz wewnątrz komory laminarnej. Desktop stanowi odpowiedź na rosnące wymagania stawiane przed kompaktowymi drukarkami nabiurkowymi wykorzystywanymi w pracach badawczo-rozwojowych. Dostępne na rynku urządzenia przeznaczone do biodruku w skali laboratoryjnej nie posiadają otwartej architektury, przez co ograniczają zakres prowadzonych prac badawczo-rozwojowych. Przy zmniejszeniu biodrukarki 3D zachowano wyróżniające BioCloner cechy - wsparcie druku wielogłowicowego oraz otwartość konstrukcji, która pozwala na rozwijanie kompatybilnych głowic i akcesoriów wspierających proces biodrukowania 3D. Projekt BioCloner poza wymienionymi biodrukarkami 3D obejmuje również dedykowane oprogramowanie sterujące zawierające kluczowe z perspektywy biodruku funkcjonalności. Dzięki międzyplatformowej kompatybilności sterowników możliwe będzie szybkie zwiększenie skali produkcji po zakończeniu prac badawczo-rozwojowych. Desktop jest wyposażony w głowice wspierające różne metody druku przestrzennego. Od najpopularniejszego druku termoplastycznym filamentem fused filament fabrication (FFF), poprzez druk wykorzystujący nadtopiony granulat fused granulate fabrication (FGF), po głowice ciśnieniowe opracowane specjalnie do wymagań stawianych przez biodruk. Przykładem tego są głowice przeznaczone do ekstruzji ciśnieniowej hydrożeli z wieloma dodatkowymi funkcjami, takimi jak sieciowanie UV oraz kontrola temperatury (zarówno grzanie, jak i chłodzenie). Opisywana w artykule drukarka została przetestowana w Laboratorium Inżynierii Biomedycznej im. E.J. Brzezińskiego mieszczącym się na Wydziale Mechanicznym Technologicznym Politechniki Warszawskiej. Wytworzono w nim rusztowania do hodowli fibroblastów mysich WEHI-164. Struktury zostały wydrukowane z hydrożelu bazującego na metakrylowanej żelatynie (GelMa), bezpośrednio w naczyniu przeznaczonym do dalszej inkubacji hodowli. Wszystkie otrzymane struktury pozwalały na zagnieżdżenie się i proliferację rozważanych w badaniu komórek. Nie zaobserwowano oznak zakażenia w trakcie hodowli. Przeprowadzone testy potwierdzają zakładaną funkcjonalność biodrukarki Desktop.
EN
The aim of this study was to obtain degradable poly(Llactide-co-glycolide) (PLGA) microparticles (MPs) with a controlled size for bottom-up bone tissue engineering. The particles were produced using the classical single water/oil emulsification method by mixing with a magnetic stirrer and by using a novel approach based on the application of a microfluidic device. This study involved a thorough investigation of different concentrations of PLGA and poly(vinyl alcohol) (PVA) during microparticle fabrication. The oil phase was PLGA dissolved in dichloromethane or ethyl acetate at 1%, 2% and 4% w/v concentrations. The water phase was an aqueous solution of PVA at concentrations of 0.5%, 1%, 2%, 2.5%, 4% and 5% w/v. The size and size distribution of the MPs were evaluated with an optical microscope. Obtained MPs were incubated in contact with osteoblast-like MG-63 cells and after days 1 and 3, the cell viability was evaluated using the reduction of resazurin and the fluorescence live/dead staining. The results showed that for each concentration of PVA, the size of the MPs increased with an increase in the concentration of PLGA in the oil phase. The MPs obtained with the use of the microfluidic device were characterized by a smaller size and lower polydispersity compared to those obtained with emulsification by mixing. Both methods resulted in the generation of MPs cytocompatible with MG-63 cells, what paves the way to consider them as scaffolds for bottom-up tissue engineering.
EN
As a natural mineral, calcium carbonate (CaCO3) is widely investigated for various medical applications. It is a biocompatible material characterized by high degradation rate and great osteoconductivity. Many researchers evaluate CaCO3 in the form of particles as a candidate for use in drug delivery systems. In this study we present an optimization of the process of producing CaCO3 particles by the precipitation method with the use of combinations of different time of ultrasound treatment and surfactant concentrations used. Depending on the synthesis conditions, various sizes of particles were fabricated. The particles were loaded with sodium alendronate (Aln, 5% or 10% by weight) with a relatively high encapsulation efficiency between 40 and 50%, depending on the amount of Aln added and the drug loading of approximately 9% for both cases. MG-63 osteoblast-like cells were contacted with 10% wt./vol extracts of fabricated particles to assess their cytotoxicity. None of the extracts investigated was found to be cytotoxic. Furthermore, an in vitro study in direct contact of MG-63 cells with particles suspended in culture medium was performed. The results showed that the fabricated particles are cytocompatible with osteoblast-like MG-63 cells. However, the higher the concentration of the particle suspension and the greater the amount of alendronate present in the solution, the lower the metabolic activity of the cells was measured. The presented method of CaCO3 particles manufacturing is simple, cost-effective, and allows one to fabricate particles of the required size and shape that are cytocompatible with MG-63 cells in defined concentrations of particle suspensions.
EN
In this study, we aimed to compare how the microstructure and architecture of polymer supports influence adhesion, growth and differentiation of human mesenchymal stem cells (hMSC) in the context of bone tissue engineering. We manufactured poly(L-lactide-co-glycolide) (PLGA) three-dimensional supports in the form of microspheres by emulsification and porous scaffolds by solvent casting/ porogen leaching. HMSC were seeded on both materials and on control tissue culture polystyrene (TCPS, bottom of the wells) and cultured in basal or osteogenic medium for 1, 3, 7 and 14 days. HMSC proliferation and osteogenic differentiation were studied using lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) assays, respectively. Furthermore, cell morphology and viability were analyzed after live/dead fluorescence staining. The results show that the optimized emulsification conditions allowed the production of PLGA microspheres with a median size of 95 µm. The PLGA scaffolds had a porosity of 82.1% ± 4.2% and a pore size of 360 µm ± 74 µm. HMSC cultured on control TCPS in osteogenic medium were more spread and polygonal than those in basal medium. They were characterized with a lower proliferation rate, as shown by the LDH results, but higher ALP activity. This suggests that hMSC osteogenic differentiation was achieved. The same tendency was observed for cells cultured on microspheres and scaffolds. Cell proliferation was more efficient on both materials and control in growth medium as compared to differentiation medium. The amount of ALP, i.e. a marker of osteogenic differentiation, was elevated, as expected, in differentiation medium. However, on day 14 cells cultured on the scaffolds in basal medium exhibited the same osteogenic potential as those cultured in differentiation medium. In general, both microspheres and scaffolds promoted hMSC adhesion, proliferation, and osteogenic differentiation and may be used for bone tissue engineering.
EN
Biphasic monolithic materials for the treatment of osteochondral defects were produced from polysaccharide hydrogel, gellan gum (GG). GG was enzymatically mineralized by alkaline phosphatase (ALP) in the presence of calcium glycerophosphate (CaGP). The desired distribution of the calcium phosphate (CaP) mineral phase was achieved by limiting the availability of CaGP to specific parts of the GG sample. Therefore, mineralization of GG was facilitated by the diffusion of CaGP, causing the formation of the CaP gradient. The distribution of CaP was analyzed along the cross section of the GG. The formation of a CaP gradient was mainly affected by the mineralization time and the ALP concentration. The formation of CaP was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and mapping, as well as energy-dispersive X-ray spectroscopy (EDX) mapping of the interphase. The microstructure of mineralized and non-mineralized parts of the material was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showing sub-micrometer CaP crystal formation, resulting in increased surface roughness. Compression tests and rheometric analyzes showed a 10-fold increase in stiffness of the GG mineralized part. Concomitantly, micromechanical tests performed by AFM showed an increase of Young’s modulus from 17.8 to more than 200 kPa. In vitro evaluation of biphasic scaffolds was performed in contact with osteoblast-like MG-63 cells. The mineralized parts of GG were preferentially colonized by the cells over the non-mineralized parts. The results showed that osteochondral scaffolds of the desired structure and properties can be made from GG using a diffusion-limited enzymatic mineralization method.
EN
Purpose: The review focuses on chitosan nanoparticle synthesis and its biomedical applications. The review briefly explains the biomedical applications of antimicrobials, cancer therapy, gene therapy, and anti-ageing. Notably, the chitosan biological activity can be further increased by coating metal ions such as iron oxide nanoparticles, gold nanoparticles, etc. Design/methodology/approach: Chitosan is the N-acetyl derivative of chitin, which has the unique properties of biodegradability, non-toxicity, polycationic property and biocompatibility— no reports of ZnO sulphated chitosan nanoparticles being produced for antibacterial. We hope for the conduction of antibacterial research of ZnO sulphated chitosan nanoparticles. Findings: The study establishes that metal oxide nano-CH, characterised by an expanded size range beyond conventional parameters, exhibits a broad spectrum of biomedical applications. Its commendable biological attributes, encompassing biocompatibility, non-toxicity, and biodegradability, make it a vehicle for drug delivery in medicine. Research limitations/implications: Nanomedicine is an emerging branch of medicine that applies tools and the basis of nanotechnology for disease prevention, treatment and diagnosis. Moreover, it helps overcome conventional medicine's limitations, including adverse side effects, poor pharmacokinetics and lack of selectivity. Originality/value: Using chitosan extracted from marine waste presents economic advantages. Furthermore, when coated with metal oxide nanoparticles, it enhances biomedical efficacy. Chitosan is an effective drug delivery vehicle, and its theranostic applications are valuable in the biomedical sector.
7
Content available Biomateriały hybrydowe na bazie związków krzemu
EN
Biomaterials based on silicon compounds are considered ideal building blocks of hybrid materials due to their unique structures and excellent performance. This review article highlights the selected achievements published by the Biomaterials Chemistry Research Group led by Professor Łukasz John, working at the Faculty of Chemistry, University of Wrocław, Poland. Paper deals with specific issues in the field of polysiloxanes and cage-like silsesquioxane-based hybrid materials, ranging from monomer functionalization and materials preparation to biomedical applications and tissue engineering. The findings reported in the original papers are summarized, and the challenges and prospects in the biomaterials field are also discussed for further development and exploitation.
EN
The civilization diseases of the 21st century are non-infectious disorders, affecting a large part of modern society. They are associated with the significant development of industry and technology, and hence with environmental pollution and an unhealthy lifestyle. These factors have led to the development of many civilization diseases, which currently include: cardiovascular diseases, respiratory diseases, diabetes, obesity, malignant tumors, gastrointestinal diseases, mental disorders and allergic diseases. The development of technologies, including modern therapies and new drugs, resulted in increase in life expectancy. This creates a global problem of an aging population with an increasing number of diseases of the old age, i.e. dementias. In addition, sedentary lifestyles and changing diets are the reasons why more and more people develop metabolic diseases, as well as neurological and cognitive disorders characterized by progressive damage to nerve cells and dementia. Currently, problem on a global scale is also the growing resistance to existing antimicrobial drugs. Therefore, the scientists face many challenges related to searching for the causes of these diseases, their diagnosis and treatment. Scientific research conducted at the Department of Biomedical Chemistry at the Faculty of Chemistry of the University of Gdańsk is part of this research trend. In this publication, we discuss various research topics with the long-term aim of solving the problems associated with the diseases mentioned above. The following chapters are dedicated to (i) looking for new effective fluorophores with diagnostic and anti-cancer activity; (ii) designing of new compounds with antibacterial and antiviral activity and their synthesis; (iii) investigating the mechanisms of amyloid deposit formation by human cystatin C and possibilities of inhibition of this process; (iv) designing and studies of compounds activating the proteasome with the potential to suppress the development of neurodegenerative diseases; (v) designing peptide fibrils and hydrogels as drug carriers; (vi) searching for peptide inhibitors of immune checkpoint as potential drugs for immunotherapy; (vii) studying the mechanism of action of selected herpesviruses by determining the structure of viral proteins and (viii) studying the composition of natural glycans and glycoconjugates in order to better understand the mechanisms of interaction of bacteria with the environment or with the host.
PL
Medycyna regeneracyjna staje się szybko rozwijającą techniką w współczesnej biomedycynie. Coraz częściej na świecie są wykorzystywane nanocząstki do naprawiania i leczenia uszkodzonych komórek. Ten artykuł przeglądowy przedstawia wiedzę na temat kompozytów, składających się z polimeru oraz hydroksyapatytu, modyfikowanych nanocząstkami i ich zastosowaniami w medycynie regeneracyjnej.
EN
Regenerative medicine is becoming a rapidly developing technique in modern biomedicine. Nanoparticles are used increasingly to repair and heal damaged cells. The paper presents knowledge about the use of nanoparticles in the modification of polymer and hydroxyapatite composites and their applications in regenerative medicine.
EN
The aim of the additive manufacturing (AM) is a production of physical objects by adding material layer-by-layer based on virtual geometry developed in the computer system. The main criteria for the division of additive manufacturing methods are the way to apply the layer and the type of construction material. In most projects, the choice of method is a compromise between costs and properties (e.g. physical, chemical or mechanical) of the manufactured object. Currently, AM methods have found application in many areas of life, including industrial design, automotive, aerospace, architecture, jewellery, medicine and veterinary medicine, bringing many innovative and revolutionary solutions. The purpose of this article is to review of the additive production methods and present the potential of medical application.
PL
W artykule skupiono się na najważniejszym, z punktu widzenia przeciętnego człowieka, wykorzystaniu hydrożeli w medycynie. Są one stosowane jako aktywne opatrunki, inteligentne nośniki substancji o właściwościach terapeutycznych, materiały implantacyjne oraz rusztowania w inżynierii tkankowej. Ich zastosowanie dało początek nowatorskim metodom w zakresie leczenia ran, zwłaszcza pooparzeniowych. Opatrunki produkowane na bazie hydrożeli znacząco przyspieszają proces gojenia się ran, obniżają ryzyko infekcji, ale nade wszystko wpływają na poprawę komfortu fizycznego i psychicznego pacjenta w całym procesie leczenia.
EN
This article focuses on the most important, from the point of view of an average person, use of hydrogels in medicine. They are used as active dressings, intelligent carriers of substances with therapeutic properties, implantation materials, scaffolds in tissue engineering. Their use has initiated a new era in the treatment of wounds, especially after burns. Dressings produced on the basis of hydrogels significantly accelerate the process of wound healing, reduce the risk of infection, reduce the size of scars, but above all improve the physical and psychological comfort of the patient throughout the treatment process.
EN
3D bioprinting is a technology which shows great potential in regenerative medicine. The technology enables the fabrication of 3D functional tissue and artificial organs based on suitable biological inks. This review provides information about the bioinks used in 3D bioprinting technology. Recent literature reports have considered the division of bioinks based on their application in the fabrication of specific tissues and organs. The main attention has been paid to bioinks designed for regeneration of cartilage, bone and nerve tissue. Moreover, the newest research on bioinks for skin, blood vessels and liver regeneration have been presented.
PL
Biodrukowanie 3D jest technologią wykazującą duży potencjał w medycynie regeneracyjnej. Technologia umożliwia wytworzenie trójwymiarowych funkcjonalnych tkanek i sztucznych narządów w oparciu o odpowiednie tusze biologiczne. Przegląd dostarcza informacji o biotuszach stosowanych w technologii biodruku 3D. W najnowszych doniesieniach literaturowych uwzględniano podział biotuszy ze względu na ich zastosowanie w wytwarzaniu konkretnych tkanek i narządów. Główną uwagę zwrócono na biotusze przeznaczone do regeneracji tkanki chrzęstnej, kostnej oraz nerwowej. Ponadto zaprezentowano także najnowsze badania prowadzone w kierunku opracowania biotuszy stosowanych w odbudowie skóry, naczyń krwionośnych, a także wątroby. Słowa kluczowe: inżynieria tkankowa, biodrukowanie.
PL
W ostatnich latach nastąpił znaczny rozwój techniki biodrukowania 3D, będącej jednym z rozwiązań współczesnej inżynierii materiałowej. Biodrukowane struktury trójwymiarowe doskonale odwzorowują naturalne warunki panujące w organizmie. Szczególną rolę przypisuje się regeneracji tkanek i narządów w wykorzystaniem biotuszy zawierających żywe komórki. Jednym z głównych składników biotuszów są alginiany – polisacharydy charakteryzujące się biokompatybilnością oraz możliwością tworzenia struktury hydrożelowej. W pracy zaprezentowano najnowsze doniesienia literaturowe dotyczące alginianów stosowanych jako biotusze do odbudowy tkanki kostnej i chrzęstnej. Ponadto omówiono pokrótce właściwości tych polimerów oraz typy biodruku, takie jak biodruk ekstruzyjny, kropelkowy (inkjet) czy też wspomagany laserem.
EN
In recent years, there has been a significant development of 3D bioprinting technique, which is one of the solutions of current materials engineering. Bioprinted three-dimensional structures perfectly replicate the natural conditions in the body. A special role is attributed to the regeneration of tissues and organs using bioinks containing living cells. One of the main components of bioinks are alginates – polysaccharides characterized by biocompatibility and ability to form a hydrogel structure. This review presents recent literature reports on alginates used as bioinks for bone and cartilage reconstruction. Moreover, the properties of these polymers and types of bioprinting such as extrusion, droplet (inkjet) or laser-assisted bioprinting are briefly discussed.
EN
Gelatin scaffolds are in the interest of tissue engineering and drug release. The scaffold porosity and microarchitecture are of great importance in proper tissue regeneration. In this work, the freeze-drying method was used to produce the scaffolds. The effect of concentration of the initial gelatin solution and pre- -freezing temperature on the scaffold’s microstructure and microarchitecture (porosity, pores size, shape, and distribution) was evaluated. The mechanical tests of samples were performed. Moreover, the influence of the gentamicin sulphate addition on the gelatin scaffolds microstructure and mechanical properties was also studied. The linear relationship of porosity to the concentration of the initial solution was observed. Therefore, it is possible to obtain a scaffold with a planned porosity. Pores were interconnected with an aspect ratio between 1.5-1.8. For porosity 74 ± 9% the average pore size was 0.7 ± 0.6 mm, with most pores in the range 0.2-0.4 mm. For the samples with porosity 57 ± 14%, the average pore size was 0.2 ± 0.2 mm, with most pores in the range 0.05-0.2 mm. The process of pre-freezing the solution in liquid nitrogen caused the highest porosity of the sample, the smaller pores size and the lower pores size distribution in comparison to the sample pre-frozen in -20°C. The mechanical parameters for all the samples are sufficient for filling bone defects. The addition of a drug to gelatin caused only slight changes in the pore architecture. This material could be applied as a scaffold in the bone loss correlated to bacterial infection.
PL
W artykule przedstawiono metodę oraz wyniki badań obejmujące próbę dostosowania przyrostowej technologii selektywnego łączenia ziaren proszku do wytwarzania indywidualizowanych ceramicznych uzupełnień ubytków kostnych z zastosowaniem syntetycznego hydroksyapatytu. W dobie intensywnego rozwoju nowoczesnych technologii wytwórczych pojawia się coraz więcej możliwości ich wykorzystania w medycynie, szczególnie z uwagi na zapewnienie precyzyjnego odwzorowania anatomii pacjenta, opartego na danych pochodzących z obrazowania medycznego. Przyrostowe wytwarzanie znalazło już zastosowanie w wytwarzaniu trójwymiarowych modeli fizycznych umożliwiających szczegółową analizę skomplikowanych przypadków oraz służących do planowania i symulacji operacji w celu zmniejszenia ryzyka oraz skrócenia czasu trwania zabiegu. Znane są również przypadki przeprowadzenia implantacji z wykorzystaniem indywidualizowanych implantów. Najczęściej wykorzystywanym materiałem w takich przypadkach są stopy tytanu, co niesie liczne ograniczenia: brak dopasowania własności mechanicznych, brak degradacji czy niepożądane reakcje obronne organizmu. Z tego powodu nieustannie trwają badania nakierowane na wytwarzanie bioakceptowalnych i biodegradowalnych materiałów, które posłużą wytwarzaniu czasowych konstrukcji wspomagających odbudowę naturalnej tkanki w miejscach ubytków. W artykule zaprezentowano metodę wytwarzania oraz przygotowania wszczepów z zastosowaniem biomateriału ceramicznego. W ramach prowadzonych badań wykonano analizę oraz dobrano odpowiednie materiały, parametry procesowe i przeanalizowano ich wpływ na jakość wytwarzanych modeli. Otrzymany w przygotowanej metodzie materiał do zastosowań medycznych poddano testom in vitro, w celu weryfikacji właściwości biologicznych.
EN
The paper presents the method and results comprising adjustment of the incremental technology of selective connection of the powder particles. It is used for the manufacturing of ceramic restorations of individualized bone defects based on synthetic hydroxyapatite. In the era of intensive development of modern technologies of manufacturing, there are more and more opportunities to use their extensive capabilities in medicine, particular by the precise mapping of the patient’s anatomy based on data from medical imaging. Incremental manufacturing has already found application in the manufacture of three-dimensional physical models enabling a detailed analysis of complicated cases and used for planning and simulation of operations to reduce the risk and duration of treatment. There are also known some cases of carrying out the implantation with the use of individualized implants. The most commonly used material in such cases are titanium alloys which cause many restrictions i.e., no matching of mechanical properties, lack of degradation or adverse reactions of the body’s defenses. For this reason, many research is being continuously conducted focusing on manufacturing bioacceptable and biodegradable materials, which will be used in manufacture of temporary structures supporting the restoration of the natural tissue in places of cavities. This paper presents a method of manufacturing and preparing implants using ceramic biomaterial. In this study, appropriate materials as well as process parameters have been chosen and their impact on the quality of the generated models was analyzed. Obtained material for medical use has been tested in vitro to verify biological properties.
first rewind previous Strona / 6 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.