Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  impact velocity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article investigates the impact of a passenger car on a tree, which resulted in the car body breaking apart. A side impact of the car on a tree at high driving speeds is not a standard test in the provisions of the applicable Directives of the European Economic Community, even though the impact poses a serious threat to the driver and the passengers. The threat comes from a deep impaction of the barrier into the body which damages the safety cage. For such impacts, it is very difficult for the vehicle speed to be reconstructed. In practice, expert witnesses and appraisers usually disregard the bodybreaking-apart-related energy due to a difficulty in establishing the data for such calculations, which leads to simplifications and speed underestimates. Performing the right simulation of such impacts with accident reconstruction programs without determining the adequate input data for calculations is also impossible to calculate. This paper presents a range of studies and calculations for such incidents and for identifying the input parameters for collision simulations. The approach presented in this article should be used by expert witnesses and researchers. Therefore, this paper provides insights into theory and practice.
EN
In order to study the dynamic splitting tensile properties of new and old concrete after high temperature treatment, the effects of different impact velocities and temperatures on failure modes, dynamic splitting strength and energy absorption of new and old concrete were analyzed by impact dynamic splitting tensile test use of variable cross-section Φ 74 mm split Hopkinson pressure bar apparatus. The results show that: Impact velocity and temperature not only affect the dynamic splitting strength of new and old concrete bonding specimens, but also affect the failure modes and degree of breakage. The dynamic splitting strength of new and old concrete increases with the increase of impact velocity, but the increase rate decreased with the increase of temperature. The dynamic splitting strength first increases slowly and then decreases dramatically with the increase of temperature. In the dynamic splitting test of new and old concrete, the energy absorption increases with the increase of impact velocity and decreases with the increase of temperature.
EN
The concrete structures under impact loading duress may be destroyed within an extremely short period of time. The importance and complexity of exploration on the impact resistance of concrete members make this area still open for discussion. In the present study, a 3-D mesoscale numerical model was established to investigate the effect of the combination of impact mass and velocity on the mechanical behavior of reinforced concrete (RC) beams subjected to impact loadings. Heterogeneity of concrete and strain rate effects of concrete and steel bars were taken into account. Furthermore, nonlinear interaction between the concrete and steel bars was considered herein. Results from macroscale and mesoscale simulation were compared with the available physical tests, indicating that the mesoscale numerical model can better represent the influence of heterogeneity of concrete on the mechanical behavior of RC beams. Five different impact energy levels were involved to study the effect of the combination of impact mass and velocity on the impact resistance of RC beams. At last, the residual bearing capacity and natural frequency of impacted RC beams were numerically calculated and their relationship was discussed. It is indicated that the deformation of RC beams is influenced strongly by the impulse, which increases with the increasing impact mass at identical impact energy. Besides, the failure mode of RC beams turns from shear-dominant failure mode to bending shear failure mode with the increase of impact mass, accompanied by the increase of energy dissipation of steel bars and the whole member. Despite this, in the present work, the combination of the impact mass and velocity had little influence on the damage extent (based on the performance) of the RC beams. Moreover, an empirical relationship between the residual bearing capacity and the natural frequency of the impacted RC beams was established as a rough reference for damage evaluation in engineering practice.
EN
The aim of this study is to propose an experimental approach supported by an analytical analysis for polymer materials under dynamic loading. The experimental technique of Hopkinson split pressure bar is used which allows for high impact velocities. The specimens are subjected to the three-point bending and the efficiency of the experimental technique is proved. During quasi-static and dynamic bending tests, the rupture mode is described and the evolution of the energy and the ultimate stresses as a function of the initial impact velocity is discussed. In addition, the critical impact velocity estimated above an important change in the rupture mode is observed. In order to better describe the physical phenomena encountered during the three-point bending impact, the analysis is supported by a rheological model based on a mass-spring system.
5
Content available remote New Experimental Technique for Dynamic Bending of Composite Materials
EN
The paper is reporting a new experimental technique to study the dynamic behaviour of composite materials subjected to bending direct impact. It is based on the Hopkinson bar system allowing to observe material behaviour at very high impact velocities. The material used to perform the tests is a woven glass-fibre-reinforced Polyamide 6.
6
Content available remote The analytical study on the optimal ballistic performance using interface theory
EN
Purpose: Analytical determination of impact velocity for different combination of target and projectile materials is the objective of this paper. Design/methodology/approach: The penetration efficiency is maximum when the interaction between the projectile and target is hydrodynamic. Considering zero strength for target and projectile the hydrodynamic impact velocities are predicted using hydrodynamic equation of state. Findings: The hydrodynamic equation being an indeterminate equation is solved using interface theory (briefed in the appendix). The indeterminate Johnson-Cook (JC) model and Steinberg-Guinian (SG) model are also solved using interface theory to predict the influence of static strength of projectile and thermal softening effects. It is inferred that the penetration efficiency decreases with increasing static strength of target and also due to thermal softening of the projectile. In the process the plastic strain, the strain rate and the increase in temperature during impact are theoretically predicted. The segmented projectiles have less/more penetration efficiency than the monolithic impactors and hence require higher/lower impact velocities nearing to hydrodynamic state. Research limitations/implications: The analytical results obtained are in fair agreement with experimental results obtained in the reviewed literatures. Some contrasts are also observed. Originality/value: The paper present the analytical study on the optimal ballistic performance using interface theory.
7
Content available remote Strefa przejściowa w technologiach wybuchowych i detonacyjnych
PL
Scharakteryzowano warstwy (strefy) pośrednie, powstające w procesie zderzenia metali, z dużymi prędkościami, jakie zachodzą przy wybuchowym łączeniu metali, także przy natryskiwaniu detonacyjnym. Warstwy takie charakteryzuje duże rozdrobnienie ziaren (niemal struktura "bezpostaciowa") i często odbiegający od materiałów wyjściowych skład chemiczny. Wywołanie ciśnienia o wartości krytycznej powoduje połączenie się obu metali niezależnie od prędkości przebiegu łączenia. Przy niższych ciśnieniach połączenie uzyskuje się jedynie wówczas, gdy prędkość przebiegu łączenia nie przekracza prędkości propagacji dyslokacji.
EN
The authors describe the substrate-surface layer interface produced due to impact of metals at very high speeds, typical of processes of the detonation bonding of metals or detonation spraying. Such and interface show a grain size reduction (almost amorphous-like structure) and different chemical composition form initial one. By reaching a critical value of the detonation pressure it is possible to bond metals irrespective of the bonding speed. At lower pressures a permanent bond is obtained only in case when the bonding speed does not exceed the rate of dislocation propagation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.