Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  imaging spectroscopy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
The spectral reconstruction of Fourier transform spectrometer can be simply achieved by using a Fourier transform or a Fourier cosine transform. However, the traditional Fourier transform solution is carried out in the complex-number field and the result is also a complex-number sequence, which will introduce an extra-phase to the spectrum and lead to the inaccuracy of reconstructed spectral intensity. On the other hand, although researchers use a Fourier cosine transform to avoid the extra-phase problem effectively, this solution has a boundary condition problem which cannot be avoided and may also lead to the inaccuracy of the reconstructed spectral intensity. To solve the problem, an improved Hilbert transform reconstruction solution (IHTRS) and a Fourier conjugated correction reconstruction solution (FCCRS) are developed by analyzing traditional reconstruction solutions. The main thought of IHTRS is using a complex-number sequence to represent the real-number signal, doing the transform in the complex-number field, and extracting the real-number spectrum from the transform result in the end. The main thought of FCCRS is constraining the transform process in the real-number field, using the conjugated property of the Fourier transform, creating the conjugated symmetrical form of the original signal first and acquiring the conjugated symmetrical form of the real spectrum, and extracting the real spectrum from it in the end. The results of the two solutions are compared. By carrying out both the simulation and the experiment using a helium lamp, it can be concluded that the FCCRS is 3 times faster than IHTRS, while the reconstructed spectral intensity accuracy of IHTRS is 29% higher than FCCRS. Both of the two solutions can avoid either the extra-phase problem caused by a discrete Fourier transform (DFT) solution or the boundary condition caused by a discrete cosine transform (DCT) solution effectively and improve the reconstructed spectral intensity accuracy.
PL
W czerwcu 2006 został przeprowadzony eksperyment teledetekcyjny w rejonie Zbiornika Dobczyckiego, w ramach, którego dokonano rejestracji hiperspektralnych obrazów satelitarnych Hyperion i ALI. Równocześnie przeprowadzono pomiary naziemne za pomocą spektrometru FieldSpec HH firmy ASD Inc., (Analytical Spectral Device) oraz pobrano próby osadów dennych ze zbiornika i wody nad osadowej. Miejsce pobrania prób wyznaczano za pomocą odbiornika GPS. Do przetwarzania obrazów satelitarnych oraz ich porównania z pomiarami spektrometrycznymi wykorzystano oprogramowanie ENVI. Ostatecznie wybrane z obrazów z HYPERION kompozycje barwne oraz wyniki analiz zostały zintegrowane z innymi warstwami istniejącymi już w bazie danych GIS (archiwalne obrazy satelitarne, lotnicze, mapy topograficzne, mapa sozologiczna, mapa glebowa, DTM) w środowisku Geomedia. Wykorzystano możliwość integracji różnych formatów i układów współrzędnych (1992 – ortofotomapa, DTM, mapa sozologiczna, 1942 – mapa glebowa, UTM – archiwalne obrazy satelitarne, pomiar GPS). Przetwarzanie obrazów hiperspektranych za pomocą oprogramowania ENVI polegało, na wstępnej korekcji wpływu atmosfery i próbie porównania krzywych spektrometrycznych z krzywymi spektralnymi z obrazów satelitarnych. Ostatnim etapem była analiza porównawcza wyników pomiaru bezpośredniego wody nad osadowej z przebiegiem krzywych spektralnych uzyskanych teledetekcyjnie. W artykule opublikowano wstępne rezultaty badań prowadzonych w ramach projektu KBN 3T 09D 09429 pt. „Badania procesów akumulacji i przemian związków chemicznych w osadach Dobczyckiego Zbiornika wody pitnej dla miasta Krakowa w celu oceny jego stanu jako ekosystemu”. Uzyskane w omawianym eksperymencie wyniki stanowią potencjalnie znacznie większy materiał badawczy niż zostało to zaprezentowane w publikacji. W przyszłości planowane są dalsze prace w kierunku lepszej wstępnej kalibracji obrazów satelitarnych, co umożliwiłoby wiarygodne porównanie pomiarów naziemnych i obrazów satelitarnych.
EN
In June 2006, a remote sensing experiment for Dobczyce Reservoir monitoring, was performed. The following data was gathered: hyperspectral images – HYPERION, multispectral images – ALI, ASD spectrometer measurements, laboratory measurements of water probe in 6 points of the reservoir. Point position was measured by GPS. Images were processed using ENVI software, initial correction and data extraction was performed. For integration, data in different formats and Geomedia coordinate systems was applied. In the paper, some results of laboratory measurements area are presented. The data was analyzed on the satellite composition to test the qualitative correlations between images and laboratory measurements. A coincidence was obtained in about 70 % (its reliability is limited because of amount of measurement points). Reflection coefficient in upper part of reservoir (more suspended matter) was ca. 0.06 and in lower part it was ca. 0.02, which confirms the quantitatively visual interpretation of the satellite composition. Unfortunately, comparison between spectrometric measurements with the spectral curve from satellite image was not successful. Image correction of the atmospheric effect was probably not satisfactory. In this paper, only initial results of the experiment are presented. In the future, the improvement of the initial correction is planned to make the comparison between spectrometer and image spectral curves possible.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.