Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  image style transfer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Traditional domain adaptation learning methods have a strong dependence on data labels. The transfer process can easily lead to a decrease in training set performance, affecting the effectiveness of transfer learning. Therefore, this study proposes a domain adaptation model that combines feature disentangling and disentangling subspaces. The model separates the content and style features of im-ages through disentangling, effectively improving the quality of image transfer. From the results, the proposed feature disentangling algorithm achieved pixel accuracy of over 84% for semantic segmentation of 14 categories, including roads, sidewalks, and buildings, with an average pixel accuracy of 85.2%. On the ImageNet, the precision, recall, F1score, and overall accuracy of the research algorithm were 0.942,0.898, 0.854, and 0.841, respectively. Compared with the One-Class Support Vector Machine, the precision, recall, F1, and overall accuracy were improved by 8.4%, 10.3%, 27.8%, and 10.9%, respectively. The proposed model can accurately recognize and classify images, providing effective technical support for image transfer.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.