Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ignition time
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przedstawiono wpływ opóźnienia czasu aktywacji źródła zapłonu na maksymalne ciśnienie wybuchu oraz maksymalną szybkość narastania ciśnienia wybuchu wybranej mieszaniny pyłowo-powietrznej. Odniesiono się do badań z zastosowaniem kulistego zbiornika o pojemności 20 dm3.
EN
Four nicotinic acid powder dusts were tested for explosion pressure and for max. rate of explosion pressure increase in air in a 20 L vessel to det. the effect of ignition delay time on the explosion characteristics. The increase in ignition delay time (55–70 ms) resulted in small increasing the explosion pressure and increasing the substantial explosion pressure rise.
2
Content available Extrudable Gassy Pyrotechnic Time Delay Compositions
EN
A copolymer of chlorotrifluoroethylene and vinylidene fluoride was investigated to assess its viability as an oxidiser, for aluminium as the fuel, in an extrudable pyrotechnic composition for application in 3D printing. Experimental results and EKVI thermochemical modelling suggested that a fuel loading of 30 wt.% would provide the maximum energy output. DTA and TGA analysis were performed in order to ascertain processing limits. With the addition of a processing aid LFC-1® samples could be extruded successfully. Printing with the compositions had limited success. The high melt viscosity paired with the filament’s susceptibility to excessive preheating caused the print quality to be low. Delamination did not occur due to good fusion achieved during layer deposition. With minor compositional adjustments printing quality could be improvedy.
EN
Solid propellant rocket motors for Shoulder Launched Infantry Weapon Systems (SLWS) are characterized with a very short burning time, high-pressure combustion and a wide spectrum of design solutions for rocket motor structure. Interior ballistic behaviour of such rocket motors depends on many factors such as design structure, propellant grain shape, propellant grain joint to the rocket motor case, type and location of the igniter, spinning mode and nozzle design. Erosive burning also plays important role due to high combustion gases mass flow rate. Numerical simulation of the igniter combustion gases flow through the hollow of the propellant grain tubes with gas temperature distribution was carried out in this paper. Results confirmed assumptions that igniter interior gas flow affected duration of the pressure rise. A mathematical model approach for prediction of the curve p = f(t) which was included in a model of the corrected propellant grain burning surface for two types of short-time rocket motors has been presented. A good agreement with measured curves was achieved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.