Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hysteretic curves
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Buckling restrained brace is an important structure for improving the seismic resistance of structures. Conducting research on new types of buckling restrained brace can improve the seismic performance and reliability of buckling resistant support. Four different types of buckling restrained braces specimens were designed and manufactured: cross-shaped square steel pipe members, cross-shaped round steel pipe members, cross-shaped carbon fiber members, and in-line carbon fiber members. By conducting quasi-static tests, the force displacement hysteresis curves, skeleton curves, stiffness degradation, equivalent viscous damping coefficient, and energy dissipation ratio of four different types of buckling restrained brace were analyzed. The research results showed that all four buckling restrained brace specimens have good hysteresis performance. The load-bearing capacity and energy consumption performance of the three specimens of square steel pipe, round steel pipe and carbon fiber with the same core unit are the same, but the inline type is worse than the cross type. The core unit specimen with a width of 80 mm is about 60% higher in bearing capacity and energy consumption than a specimen with a width of 50 mm. The core unit of some specimens undergoes multi-wave buckling. For carbon fiber specimens, the CFRP is prone to breakage due to the lateral thrust of the restraining unit. Therefore, steel hoop or stirrup should be added to the end to improve the restraint effect when designing and manufacturing.
EN
The use of high-strength longitudinal and transverse reinforcements in confined concrete columns can improve bearing capacity and deformability. Besides, experiments on confined concrete columns with side length of 400 mm can better reflect the behaviour of confined concrete columns in engineering project. Thus, the purpose of this study is to investigate the seismic behaviour of full-scale confined concrete columns with high-strength longitudinal and transverse reinforcements. Based on 15 confined concrete columns subjected to lateral cyclic loading, the effects of axial compression ratio, shear span ratio and volumetric ratio on the seismic behaviour of confined concrete columns were studied. The results showed that the ultimate drift ratios of the 15 confined concrete columns ranged from 1/43 to 1/20, i.e. 1.2–2.5 times as much as the specified limit (1/50) of rate earthquake, indicating excellent ductility. Additionally, the high-strength transverse reinforcements could not yield at peak load but could yield at the ultimate displacement. The high-strength transverse reinforcement stresses at the peak lateral load were 430–690 MPa, approximately 56–91% of the transverse reinforcement yield strength. Finally, an empirical formula was proposed to predict the ductility factor that was then evaluated by comparing the predicted values with the experimental results of 37 confined concrete columns.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.