Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hydrothermal growth
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Photoresistor based on ZnO nanorods grown on a p-type silicon substrate
EN
In this work we discuss a method of preparation of a highly sensitive light detector based on ZnO nanorods. A photoresistor constructed by us is based on a heterojunction between high quality ZnO nanorods and high resistivity p-type Si used as a substrate for nanorods’ deposition. ZnO nanorods are grown by a modified version of a microwave assisted hydrothermal method which allows for growth of high quality ZnO nanorods in a few minutes. The obtained photoresistor responds to a wide spectral range of light starting from near infrared (IR) to ultraviolet (UV). Properties of the detector are evaluated. We propose the use of the detector as an optical switch.
EN
Zinc oxide thin films with different thicknesses were prepared on microscopic glass slides by sol-gel spin coating method, then hydrothermal process was applied to produce zinc oxide nanorod arrays. The nanorod thin films were characterized by various spectroscopic methods of analysis. From the images of field emission scanning electron microscope (FESEM), it was observed that for the film thickness up to 200 nm the formed nanorods with wurtzite hexagonal structure were uniformly distributed over the entire surface substrate. From X-ray diffraction analysis it was revealed that the thin films had good polycrystalline nature with highly preferred c-axis orientation along (0 0 2) plane. The optical characterization done by UV-Vis spectrometer showed that all the films had high transparency of 83 % to 96 % in the visible region and sharp cut off at ultraviolet region of electromagnetic spectrum. The band gap of the films decreased as their thickness increased. Energy dispersive X-ray spectroscopy (EDS) showed the presence of zinc and oxygen elements in the films and Fourier transform infrared spectroscopy (FT-IR) revealed the chemical composition of ZnO in the film.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.