Diamond-like carbon (DLC) thin films were prepared by hydrothermal electrochemical method in one-step process. The structural characterization of these films was carried out by scanning electron microscopy (SEM), Raman spectroscopy, and infrared reflectance spectroscopy (IR). It was found that there was an increased sp2 carbon content but decreased sp3 carbon and hydrogen contents with an increase in current density. The flexibility and internal stresses of the DLC films were affected by hydrogen, sp3 amorphous carbon and ordered crystalline sp2 carbon contents. The highly flexible DLC films with high sp3 carbon and hydrogen contents were prepared at a current density of 0.001 mA/cm2.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Carbon films were synthesized under hydrothermal electrochemical conditions using sugar as the carbon source at temperature ranging from 170 C to 180 C. The reaction temperature affects the degree of sugar decomposition, the concentration of carbon ions, supersaturation and overpotential of the solution, thereby affecting the morphology, orientation, and crystallinity of the films. The graphitic content (sp2) increases with increasing the processing temperature and vice versa. The higher the synthesizing temperature the less the amount of amorphous carbon (sp3). The graphite in thin films prepared at 170 C and 175 C shows a (101) preferred orientation, whereas those prepared at 180 C show a fairly random orientation. The mechanism of this synthesizing process seems to consist of three stages.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.