The research presented in this paper concerns the influence of the rate of plastic deformation generated directly in the processes of severe plastic deformations on the microstructure and properties of three metals: copper, iron and zinc. The equal channel angular pressing (ECAP) method was used, and it was performed at a low plastic deformation rate of ∼ 0.04 s−1. The high plastic strain rate was obtained using the hydrostatic extrusion (HE) method with the deformation rate at the level of ∼ 170 s−1. For all three tested materials different characteristic effects were demonstrated at the applied deformation rates. The smallest differences in the mechanical properties were observed in copper, despite the dynamic recrystallization processes that occurred in the HE process. In Armco iron samples, dynamic recovery processes in the range of high plastic deformation rates resulted in lower mechanical properties. The most significant effects were obtained for pure zinc, where, regardless of the method used, the microstructure was clearly transformed into bimodal after the ECAP process, and homogenized and refined after the HE process. After the HE process, the material was transformed from a brittle state to a plastic state and the highest mechanical properties were obtained.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Regarding severely deformed materials of potentially high applicability in various industry branches, their microstructure evolution during processing is of vast significance as it enables to control or adjust the most essential properties, including mechanical strength or corrosion resistance. Within the present study, the microstructure development of commercially pure titanium (grade 2) in the multi-stage process of hydrostatic extrusion has been studied with the use of the well-established techniques, involving electron backscatter diffraction as well as transmission electron microscopy. Microstructural deformation-induced defects, including grain boundaries, dislocations, and twins, have been meticulously analyzed. In addition, a special emphasis has been placed on grain size, grain boundary character as well as misorientation gradients inside deformed grains. The main aim was to highlight the microstructural alterations triggered by hydroextrusion and single out their possible sources. The crystallographic texture was also studied. It has been concluded that hydrostatically extruded titanium is an exceptionally inhomogeneous material in terms of its microstructure as evidenced by discrepancies in grain size and shape, a great deal of dislocation-type features observed at every single stage of processing and the magnitude of deformation energy stored. Twinning, accompanied by grain subdivision phenomenon, was governing the microstructural development at low strains; whereas, the process of continuous dynamic recrystallization came to the fore at higher strains. Selected mechanical properties resulting from the studied material microstructure are also presented and discussed.
Part 1 of the article presents the technological path of producing semi-finished products for wires constituting input material in additive technologies. On the basis of the developed chemical compositions of experimental Fe-based alloys, laboratory ingots with a square section of 120×120 mm / 130×130 mm were produced, which were then hot rolled into flat bars. In order to select the physical parameters of the drawing tests, numerical modelling of the process was performed. As a result of the simulations, it was found that the calculated drawing force exceeds the capabilities of the experimental drawing machine and for this reason, hydrostatic extrusion was used to produce bars intended for drawing wires. The hydrostatic extrusion method was used to make bars with a diameter of 5 mm from three tested materials, while three experimental steels showed insufficient susceptibility to extrusion at high pressure and cracked at various strain values. An analysis of possible causes of bar breakage during extrusion was carried out on the basis of the results of microstructure examination.
PL
W części 1 artykułu przedstawiono ścieżkę technologiczną wykonania półwyrobów przeznaczonych na druty będące materiałem wsadowym do technologii przyrostowych. Na podstawie opracowanych składów chemicznych eksperymentalnych stopów na bazie Fe wytworzono wlewki laboratoryjne o przekroju kw. 120×120 mm / 130×130 mm, które następnie poddano walcowaniu na gorąco na płaskowniki. W celu dobrania parametrów fizycznych testów ciągnienia wykonano modelowanie numeryczne tego procesu. W wyniku symulacji ustalono, że wyliczona siła ciągnienia przewyższa możliwości eksperymentalnej ciągarki i z tego powodu do wytworzenia prętów przeznaczonych do ciągnienia drutów zastosowano wyciskanie hydrostatyczne. Metodą wyciskania hydrostatycznego wykonano pręty o średnicy 5 mm z trzech badanych materiałów, natomiast trzy eksperymentalne stale wykazały niewystarczającą podatność do wyciskania z wysokim ciśnieniem i ulegały pękaniu przy różnych wartościach odkształcenia. Przeprowadzono analizę możliwych przyczyn pękania prętów w trakcie wyciskania na podstawie wyników badań mikrostruktury.
The methods of severe plastic deformation (SPD) of metals and metal alloys are very attractive due to the possibility of refinement of the grains to nanometric sizes, which facilitates obtaining high mechanical properties. This study investigated the influence of SPD in the process of hydrostatic extrusion (HE) on the anisotropy of the mechanical properties of the CuCrZr copper alloy. The method of HE leads to the formation of a characteristic microstructure in deformed materials, which can determine their potential applications. On the longitudinal sections of the extruded bars, a strong morphological texture is observed, manifested by elongated grains in the direction of extrusion. In the transverse direction, these grains are visible as equiaxed. The anisotropy of properties was mainly determined based on the analysis of the static mini-sample static tensile test and the dynamic impact test. The obtained results were correlated with microstructural observations. In the study, three different degrees of deformation were applied at the level necessary to refine the grain size to the ultrafine-grained level. Regardless of the applied degree of deformation, the effect of the formation of a strong morphological texture was demonstrated, as a result of which there is a clear difference between the mechanical properties depending on the test direction, both by the static and dynamic method. The obtained results allow for the identification of the characteristic structure formed during the HE process and the more effective use of the CuCrZr copper alloy in applications.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper presents general characteristics of high-pressure forming of metals and metal alloys with the use of hydrostatic extrusion method. It describes the advantages of the process with particular attention paid to the possibility of refining the structure of metals and metal alloys to a nanometric or ultra-fine level resulting in significant improvement of their mechanical properties. It shows the examples of practical application of formed metals, namely titanium and aluminium alloy AA5083, in the manufacture of fastening elements.
The presented results describe the effect of severe plastic deformation on the structure and mechanical properties of AA5083 and AA5754 alloys. Both materials were subjected to single hydrostatic extrusion (HE) and cumulative hydrostatic extrusion in the case of AA5083 and a combination of plastic deformation by equal-channel angular pressing (ECAP) with the next HE for AA5754. After the deformation, both alloys featured a homogeneous and finely divided microstructure with average grain size deq = 140 nm and 125 nm for AA5083 and AA5754, respectively. The selection of plastic forming parameters enabled a significant increase in the UTS tensile strength and YS yield stress in both alloys – UTS = 510 MPa and YS = 500 MPa for alloy AA5083 after cumulative HE, and 450 MPa and 440 MPa for alloy AA5754 after the combination of ECAP and HE, respectively. It has been shown on the example of AA5083 alloy that after the deformation the threads of the fasteners made of this material are more accurate and workable at lower cutting speeds, which saves the cutting tools. The resultant properties of AA5083 and AA5754 alloys match the minimum requirements for the strongest Al-Zn alloys of the 7xxx series, which, however, due to the considerably lower corrosion resistance, can be replaced in many responsible structures by the AA5xxx series Al-Mg alloys presented in this paper.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A method has been developed for determining residual stress based on displacement fields near drilled holes analyzed using 3D digital image correlation. Finite element modeling was used to determine corrections for analytical equations describing displacement fields near the blind holes, which made it possible to determine the residual stress distribution over a wide range of hole depth-to-hole diameter ratios and various areas of displacement field measurements using inverse method iterative calculations. The proposed method eliminates many drawbacks of traditional procedure based on strain gauges as hole eccentricity sensitivity and requirement of the relatively large span between holes. The method and testing setup, build-up of generally available components, were used to determine the residual stress distribution for 316 LVM samples processed by two methods from the large deformation group: hydrostatic extrusion (HE) and high-pressure torsion (HPT), by drilling 1.75 and 0.58-mm-diameter blind holes, respectively. In the case of the measurements performed on the surface of a HE-processed 16 mm bar cut along its diameter, a gradual change was revealed-from a compressive to a tensile residual stress distribution (from ~ − 300 MPa in the center to 400 MPa in 4 mm distance from the edge) in the longitudinal direction, with near-zero values in the radial direction. Moreover, the method was also adapted to perform measurements on the outside surface of the bar, which gave results consistent with those taken along the radius profile (~ 600 MPa longitudinal stress). Measurements on the top surface of a cylinder 10 mm in diameter and 1 mm high processed by HPT showed a high compressive residual stress in the center and a dominant shear component for the holes drilled at different distances from the center.
Wyciskanie hydrostatyczne (WH) należy do technologii przeróbki plastycznej i jest specyficzną odmianą wyciskania współbieżnego. Metody wyciskania współbieżnego są używane głównie do wytwarzania produktów podłużnych pełnych lub wydrążonych o różnych profilach przekroju poprzecznego. Prezentowane w tej pracy wyciskanie hydrostatyczne dotyczy tytanu Grade2 oraz prętów o przekroju kołowym. Wyniki licznych badań dowiodły, że odkształcanie różnych metali metodą WH umożliwia rozdrobnienie ziarna oraz istotne umocnienie. Generalnie stwierdzono, że metoda WH pozwala wytwarzać metale o strukturach nanoziarnistych oraz ultradrobnoziarnistych. Celem pracy była ocena możliwości zastosowania metody wyciskania hydrostatycznego do przeróbki plastycznej tytanu Grade2. Scharakteryzowano metodę WH oraz wykazano jej duży potencjał w kontekście przeróbki tytanu Grade2. W pracy przedstawiono i omówiono cztery przykładowe, niezależne procesy technologiczne wyciskania hydro-statycznego tytanu. Zaprezentowano wyniki badań strukturalnych oraz właściwości mechaniczne uzyskanych produktów. Wyniki dowiodły, iż stosując technologię WH, możliwe jest uzyskanie w tytanie Grade2 struktury nanoziarnistej o średniej wielkości ziaren w przedziale 50–70 nm. Jednocześnie zaobserwowano istotne umocnienie wyciskanego materiału wyrażone wzrostem granicy plastyczności, wytrzymałości na rozciąganie oraz twardości. Uzyskany nanoziarnisty tytan charakteryzował się właściwościami mechanicznymi porównywalnymi z właściwościami stopu tytanu Ti6Al4V. Ponadto, w prezentowanej pracy potwierdzono, że można wyprodukować lity i objętościowy nanoziarnisty Ti w formie prętów o różnych średnicach, tzn. że możliwe jest skalowanie średnicy wsadu i produktu.
EN
Hydrostatic extrusion (HE) belongs to the technology of plastic working, and is a specific variation of direct extrusion. Direct extrusion methods are mainly used to produce oblong solid or hollow products with different transverse-section profiles. The hydrostatic extrusion presented in this paper concerns titanium Grade2 and rods with a circular transverse section. The results of numerous studies have shown that the deformation of various metals by the HE method enables grain refinement and significant strengthening. Generally, it was found, that the HE method makes it possible to manufacture metals having nanograined and ultrafinegrained structures. The aim of the work was to evaluate the possibilities of using the hydrostatic extrusion method for plastic working of titanium Grade2. The HE method was characterized and its great potential in the context of processing Ti Grade2 was demonstrated. In this paper, four exemplary, independent technological processes of the hydrostatic extrusion of titanium were presented and discussed. The results of our structural research and tests of the mechanical properties of the products obtained were presented. Those results proved that, using HE technology, it is possible to obtain in titanium Grade2 a nanograined structure characterized by an average grain size of 50–70 nm. At the same time, a significant strengthening of the extruded material was observed, expressed by an increase in yield strength, tensile strength and hardness. The obtained nanograined titanium was characterized by mechanical properties comparable to that of titanium Ti6Al4V alloy. Moreover, in the presented work it was confirmed that it is possible to produce solid and bulk nanograined Ti in the form of rods of different diameters i.e. that is possible to scale up the diameter of the billet and the product.
The study attempts to investigate the influence of severe plastic deformation (SPD in the hydrostatic extrusion (HE) process on the anisotropy of the structure and mechanical properties of the AA 6060 alloy. Material in isotropic condition was subjected to a single round of hydrostatic extrusion with three different degrees of deformation (ε= 1.23, 1.57, 2.28). They allowed the grain size to be fragmented to the nanocrystalline level. Mechanical properties of the AA 6060 alloy, examined on mini-samples, showed an increase in ultimate tensile strength (UTS) and yield strength (YS) as compared to the initial material. Significant strengthening of the material results from high grain refinement in transverse section, from »220 μm in the initial material to »300 nm following the HE process. The material was characterized by the occurrence of structure anisotropy, which may determine the potential use of the material. Static tensile tests of mini-samples showed »10% anisotropy of properties between longitudinal and transverse cross-sections. In the AA6060 alloy, impact anisotropy was found depending on the direction of its testing. Higher impact toughness was observed in the cross-section parallel to the HE direction. The results obtained allow to analyze the characteristic structure created during the HE process and result in more efficient use of the AA 6060 alloy in applications.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the current research the hydrostatic extrusion (as one of the most common method of grain refinement) of the commercial 1.4462 duplex stainless steel was carried out using several reduction stages leading to a cumulative deformation strain ɛ = 1.4, and then ɛ = 3.8. The extrusion process has led to a change of microstructure and texture of the investigated material as was expected. Moreover, these changes were accompanied by improvements in mechanical properties measured by the nanohardness. The aim of this research was the characterization of the texture, residual stress and mechanical properties after subsequent stages of deformation.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: All results obtained in the present study allowed to analyse the changes in the microstructure and texture of the commercial 6060 aluminium alloy, after deformation process by severe plastic deformation. There were compare two deformation degree samples received by cumulative hydrostatic extrusion. Design/methodology/approach: The samples of the 6060 alloy were subjected to a onepass and three-passes extrusion process and next the age hardening. The microstructure changes were investigated by using transmission and scanning electron microscopy. To study the texture evolution the X-ray diffraction were made. Findings: The microscopic observations results presented the refinement of microstructure as a result of deformation process. The evolution of fibrous character of texture was observed. There were noted the disappearance of fibrous component <100> during subsequent deformation processes and generation the fibrous component <111> after high deformation degree. In addition, for each state, the presence of cubic texture component was recorded. Research limitations/implications: For the future research are planned to analyse changes in mechanical properties after hydrostatic extrusion combinate with age hardening of investigated materials. Originality/value: The paper focuses on the investigation of microstructure and texture evolution after modern method of plastic deformation.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present study demonstrate the effect of the combined deformation (hydrostatic extrusion and rolling) on microstructure and mechanical properties of model Al-Li alloys. It has been shown the anisotropy of material structure and properties. Additionally it has been demonstrated increase of yield strength at the result of the plastic deformation.
PL
W pracy przedstawiono wpływ łączonego odkształcenia wyciskania hydrostatycznego i walcowania na zimno na mikrostrukturę i właściwości modelowych stopów Al-Li. Badania wykazały obecność anizotropii struktury materiału i właściwości. Ponadto przedstawiono wzrost wła-ściwości wytrzymałościowych w wyniku odkształcenia plastycznego.
The aim of the present paper was to investigate microstructure and texture evolution of two single crystals and polycrystal of Cu-8.5%at.Al material. All of mentioned samples were deformed by HE to achieve true strain ε = 1.17. For microstructure analyzes observations by transmission electron microscope (STEM) were done. Crystalline size for samples after SPD were determine using XRD method. The global texture measurements were done using Bruker D8 Discover diffractometer equipped in Cr radiation. Microstructure investigations revealed nanocrystalline structure in single crystals with initial orientations <110> and <100> and polycrystalline Cu-8.5%at.Al material after SPD. The global texture measurements have shown the stability of initial orientation of <100> Cu-8.5%at.Al single crystal after HE, whereas the same SPD process strongly brakes up the orientation <110> Cu-8.5%at. Al single crystal.
Nanocristalline pure titanium in comparison to inicrocrystalline titanium is characterized by better mechanical properties which influence its wider usability. The aim of the research was to evaluate whether the grain size of pure titanium (micro- and nanocrystalline) has influence on the cutting force components and the surface roughness in the milling process. Models of cutting force components for both materials were prepared and differences between the results were examined. The feed rate effect on selected parameters of surface roughness after milling of micro- and nanocrystalline pure titanium was determined.
Obróbka plastyczna z dużymi odkształceniami powoduje rozdrobnienie mikrostruktury materiałów co skutkuje wzrostem własności mechanicznych. Aby powstrzymać utratę spójności materiału podczas odkształcania należy zachować duże naprężenia ściskające w strefie odkształcenia. W pracy przedstawiono korzystny wpływ wysokiego ciśnienia na wzrost plastyczności i powstrzymanie pękania poprzez zastosowanie metody przeciskania przez równoosiowy kanał kątowy ECAP i wyciskania hydrostatycznego HE. Opisano konstrukcje pras, ich podstawowe osiągi i parametry procesów. Scharakteryzowano prasę do HE o średnicy 22mm do 2 GPa i stanowisko do procesu ECAP o przekroju 30mm i nacisku do 2.3 GPa, uwzględniając optymalizowanie konstrukcji z wykorzystaniem metod analitycznych opartych o teorię sprężystości i plastyczności Lame’a, oraz metodą elementów skończonych MES. Analizie poddano materiały komór roboczych i podstawowe parametry procesu. Zredukowane naprężenia węzłowe komory ECAP ze stali S600 i komory HE ze stali 45HNMFA wykazały, że wytrzymałości dla maksymalnych obciążeń nie są przekroczone. Dla stopu aluminium 6060 optymalny kąt naroża kwadratowego kanału ECAP wynosi 16º. Przedstawiono, określone metodą MES, niejednorodność odkształcenia plastycznego przy wyciskaniu hydrostatycznym kwadratowego profilu miedzi oraz obszary lokalizacji umocnienia podczas wyciskania złożonego profilu z tytanu. Opisano łatwość łączenia ze sobą obu technik SPD i jego wykorzystania w celu wzmacniania efektu rozdrabniania ziaren do rozmiarów nanometrycznych. Wykazano, ze rozdrabnianie mikrostruktury metodami deformacji pod wysokim ciśnieniem prowadzi do wzrostu wytrzymałości o ponad 70% (miedź i stop tytanu Ti grade 5) oraz granicy plastyczności powyżej 100% (stop niklu C65500 i aluminium 5483). Przedstawiono obszary możliwych zastosowań przetworzonych materiałów jak instrumentarium i implanty medyczne, elementy złączne, oprzyrządowanie spawalnicze czy rury i profile złożone.
EN
Severe plastic deformation working results in refinement of the microstructure of materials, improving their mechanical properties. To prevent loss of the material's cohesion during deformation, high compressive stresses must be maintained in the deformation zone. This article presents the beneficial use of high pressure to increase plasticity and prevent cracking, by applying the equal channel angular pressing(ECAP) and hydrostatic extrusion (HE) methods. Basic press designs, performances, and process parameters are described. The HE press, with a diameter of 22mm, up to 2 GPa and an ECAP station with a cross-section of 30mm and pressing force up to 2.3 GPa are characterized, with design optimization by means of analytical methods based on Lame's theory of elasticity and plasticity and the finite-element method (FEM). The materials of working chambers and basic process parameters are analyzed. Reduced node stresses of the ECAP chamber, made of S600 steel, and the HE chamber, made of 45HNMFA steel, show that the materials' strength is not overcome at their respective maximum loads. For the 6000 aluminum alloy, the optimal angle of the square corner of the ECAP channel is 16º. Non-uniformity of plastic deformation during hydrostatic extrusion of a square copper section and hardening areas during extrusion of titanium sections determined using FEM are presented. The ease of combining both of these SPD techniques and using them to amplify the grain refinement effect to nanometric dimensions are described. It is shown that refinement of the microstructure by highpressure deformation leads to improvement of strength by over 70% (copper and grade 5 Ti alloy) and yield point above 100% (C65500 nickel and 5483 aluminum alloys). Possible areas of application for worked materials are presented, such as surgical instruments and medical implants, fixing elements, welding tools, pipes and complex sections.
16
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The paper synthetically presents the ideas of hydrostatic extrusion of metals in order to obtain strong refinement of their structure. It seems that modification of extruded material and the surfaces of dies may be one of the methods for limiting these adverse phenomena. The paper describes the role of lubricating the Al layer during the titanium extrusion process. Design/methodology/approach: Studies concerning this technique are conducted at The Polish Academy of Sciences Institute of High Pressure Physics. Due to strong plastic deformations (SPD), the cumulative hydrostatic extrusion (HE) process must be used, i.e. the process of step-by-step extrusion with low deformation ratio for each step, the deformations created in each step accumulate and result in strong cumulative deformation. Findings: This is because the available working pressures of extrusion presses are limited, thus limiting the maximum deformation ratio available in a single extrusion pass. This limitation is additionally sharpened by higher strength of material deformed in cold state or at low temperatures. Research limitations/implications: Due to tribological conditions existing between the extruding tool (a die) and the flowing material, the die becomes worn quickly and the finishing quality (roughness) of the extruded material surface deteriorates. Practical implications: As a result, the extruding pressure increases which has a negative impact, the machine and tooling load becomes higher and the phenomenon of abrupt outflow of the material being extruded from the extruding tool occurs, causing poor tolerances of lateral dimensions of the product. Originality/value: The process of depositing Al coatings on cylindrical surfaces of titanium material being extruded using the PA PVD technique was presented in detail. Also, the paper describes examinations of Al coating properties and structure of Grade 3 titanium in subsequent steps of hydrostatic extrusion process.
Processes of severe plastic deformation (SPD) are defined as a group of metalworking techniques in which a very large plastic strain is imposed on a bulk material in order to make an ultra-fine grained metal. The present study attempts to apply Equal-Channel Angular Pressing (ECAP), Hydrostatic Extrusion (HE) and combination of ECAP and HE to 99.5% pure aluminium. ECAP process was realized at room temperature for 16 passes through route Bc using a die having an angle of 90°. Hydrostatic extrusion process was performed with cumulative strain of 2.68 to attain finally wire diameter of d = 3 mm. The microstructure of the samples was investigated by means of transmission and scanning electron microscopy. Additionally, the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. The measured grain/subgrain size show, that regardless the mode of deformation process (ECAP, HE or combination of ECAP and HE processes), grain size is maintained at a similar level – equal to d = 0.55-0.59 μm. A combination of ECAP and HE has achieved better properties than either single process and show to be a promising procedure for manufacturing bulk UFG aluminium.
The study was concerned with the effect of severe deformation induced in one pass, by hydrostatic extrusion on the properties of fine aluminum, aluminum-silicon alloy, copper and silver wires. The influence of adiabatic heating which takes place during deformation on the mechanical properties and microstructure of the wires was examined. The quality of the surface of the wires was estimated. It has been demonstrated that fine aluminum and silver wires processed by hydrostatic extrusion have very good mechanical properties and a high-quality surface.
PL
W pracy zbadano wpływ dużych odkształceń, uzyskanych w jednym procesie wyciskania hydrostatycznego na właściwości wytworzonych produktów w postaci cienkich drutów z aluminium, stopu aluminium-krzem, miedzi oraz srebra. Uwzględniono efekty grzania adiabatycznego w trakcie procesu odkształcenia i jego wpływ na własności mechaniczne oraz mikrostrukturę produktów. Ocenie została poddana także jakość powierzchni wytwarzanych drutów. Dla aluminium oraz srebra wykazano, że za pomocą procesu wyciskania hydrostatycznego można wytwarzać druty o wysokich własnościach mechanicznych oraz dobrej jakości powierzchni.
Al-Mg alloys of the 5xxx series are strain hardenable and have moderately high strength, excellent corrosion resistance even in salt water, and very high toughness even at cryogenic temperatures to near absolute zero, which makes them attractive for a variety of applications, e.g. in systems exploited at temperatures as low as -270°C, and marine applications. The present study is concerned with the effect of a combination of 2 processes, which generate serve plastic deformation (SPD), equal channel angular pressing (ECAP) and hydrostatic extrusion (HE), on the microstructure and mechanical properties of an alloy that contain Al and Mg. The alloy was subjected to multi-pass ECAP followed by cumulative HE with a total true strain of 5.9. The microstructure of SPD samples was evaluated by transmission and scanning electron microscopy. The mechanical properties were determined by tensile tests and microhardness measurements. The combination of the two processes gave a uniform nanostructure with an average grain size of 70nm. The grain refinement taking place during the SPD processing resulted in the increase of the mechanical strength by 165% (YS) with respect to that of the material in the as- received state. The experiments have shown that the combination of HE and ECAP permits producing homogeneous nanocrystalline materials of large volumes.
PL
Stopy aluminium serii 5XXX (Al-Mg) umacniane odkształceńiowo charakteryzują się relatywnie wysoką wytrzymałością, bardzo dobrą odpornością korozyjną szczególnie w wodzie morskiej i bardzo wysoką odpornością udarnościową nawet w temperaturach kriogenicznych. Własności te sprawiają, że te stopy są atrakcyjne dla wielu zastosowań gdzie wymagana jest praca w niskich temperaturach, nawet do -270°C oraz praca w środowisku morskim. W przeprowadzonych badaniach określono wpływ kombinacji dwóch procesów generujących duże odkształcenia plastyczne, przeciskania przez kanał kątowy (ECAP) oraz wyciskania hydrostatycznego (HE), na mikrostrukturę i własności mechaniczne stopu 5483. Zastosowano kombinację procesu kumulacyjnego wyciskania hydrostatycznego poprzedzonego procesem ECAP z łącznym odkształceniem rzeczywistym 5.9. Badania mikrostrukturalne zostały przeprowadzone z wykorzystaniem transmisyjnej mikroskopii elektronowej. Własności mechaniczne określono w statycznej próbie rozciągania oraz pomiarach mikrotwardości. Kombinacja obu procesów pozwoliła uzyskać materiał o jednorodnej nanostrukturze o średniej wielkości ziarna 70nm. Rozdrobnienie struktury spowodowało wzrost własności mechanicznych (granicy plastyczności) o około 165% w porównaniu do materiału przed odkształceniem plastycznym. Przeprowadzone eksperymenty wykazały że kombinacja procesów HE oraz ECAP pozwala na wytwarzanie jednorodnych nanomateriałów w dużych objętościach.
W pracy przedstawiono wyniki badań doświadczalnych erozji kawitacyjnej powłok TiN o zróżnicowanej grubości, osadzonych na różne podłoża (stal X6CrNiTi18-10 i X39Cr1 3) metodą katodowego osadzania łukowego (ARC) PVD. Stal X39Crl3 hartowano, a następnie odpuszczano w 600 i 400°C w celu uzyskania podłoży o zróżnicowanych własnościach mechanicznych. Badania erozyjne przeprowadzono na stanowisku ze szczelinowym wzbudnikiem kawitacji. Celem badań było określenie wpływu podłoża oraz grubości powłok na odporność kawitacyjną całego systemu areolgicznego oraz weryfikacja wskaźnika odporności RCAV systemów twarda powłoka-stalowe podłoże na niszczenie kawitacyjne. W pracy wykazano, że osadzenie twardych powłok TiN na stalowych podłożach przyczyniło się do spadku ubytku masy w porównaniu z ubytkami masy powstałymi na stalach bez powłok TiN. Wzrost grubości powłok TiN osłabił pozytywny efekt ich nałożenia. Wyniki badań doświadczalnych pozytywnie zweryfikowały wskaźnik RCAV wyrażony wzorem (1) - parametr odporności systemów twarda powłoka-stalowe podłoże na niszczenie kawitacyjne. Uzyskane wyniki świadczą, że wskaźnik RC,V bardzo dobrze określa odporność kawitacyjną systemów twarda TiN powłoka-stalowe podłoże niezależnie od grubości powłoki i własności podłoży.
EN
The results ofcavitation erosion tests ofTiN coatings with various thicknesses deposited on various substrates (X6CrNiTi18-10 and X39Cr13) by means ofthe cathodic arc evaporation (ARC) PVD method are presented. X3 9Crl3 steel was subjected to various thermal treatment in order to obtain substrates ofdifferent properties. The cavitation erosion tests were performed in a cavitation tunnel with a slot cavitator. The purpose of this work is to assess the infiuence of the substrate properties and coating thickness on the cavitation erosion resistance of the whole hard coating-steel substrate system and verification ofthe cavitation erosion resistance parameter RCAV The depositions ofTiN coatings on a steel substrate have caused improvement of the cavitation erosion resistance (Fig. 1). An increase in the coating thickness reduces the positive effect of TiN coatings deposition. The experimental data positively verified the resistance parameter, RCAV (Fig. 3). This shows that the RCAV parameter very well describes the cavitation erosion resistance of hard TiN coatings-steel substrate systems regardless of the coating thickness or properties ofthe steel used as substrates.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.