This article concerns the calculation of the Groundwater Protection Zones (GWPZ) of the Pozharan/Požaranje wellfield. It shows the methodology of delineating water source protection zones with a hydrogeological computer model and serves as an example for further work in this field. The wellfield is located in the south-eastern part of Kosovo, about 1 km west of Viti/Vitia and is an important water supply source for the neighboring villages. The wellfield is located 35 km southeast of Prishtina/Priština, the capital city of Kosovo. A total of four public water production wells have been drilled into the aquifer for which the protection zones will be calculated. In order to delineate the Groundwater Protection Zones according to the Kosovar regulations, a groundwater model was set up to calculate the groundwater flow in the well field. Data has to be collected to create such a model. With help of previous studies and own investigations, the aquifer was identified. A large part of the work is finding observation wells (piezometers) in the study area and measuring its height and groundwater level. Afterwards, the model was calibrated. The model is capable of calculating flow paths and by means of particle tracking, it is possible to visualize where the water comes from. Adding the speed of groundwater flow, the time dependent zones can be drawn. Finally, the three protection zones were described as well as the proposed land use restrictions and the recommendations for land use planning were described. Several hazards to groundwater were identified and described inside those zones.
In the past decade, the Rural Water and Sanitation Support Program in Kosovo (RWSSP) funded by the Swiss Agency for Development and Cooperation (SDC) has significantly increased the access to public water supply of the rural population of Kosovo. Currently in Phase VI, the programme is supporting the regional water companies of Kosovo to protect the water resources used for public water supply. This article presents the programs phase VI output 2.5.1: improved water source protection. The programme started to support the first implementation of a ground water protection zone (locally called sanitary protection zone) in Kosovo according to laws and through a systematic process. This article describes the full process of establishing sanitary protection zones for public groundwater wells in Kosovo and reveals the technical and administrative challenges and lessons learned when doing so. The technical investigations require detailed surveys starting from geological, hydrogeological and morphological field work as well as monitoring of groundwater levels, realization of additional piezometers, calculation of hydrogeological parameters and several more. For the Lipjan well field, a hydrogeological computer model was established to understand groundwater flow and to delineate the three necessary groundwater source protection zones. The technical understanding further requires a pollution survey and water quality analysis.
The present paper discusses studies related to the preparation of a hydrogeological model of groundwater flow and nitrate transport in an area where a precision farming system is applied. Components of water balance were determined using the UnSat Suite Plus software (HELP model), while the average infiltration rate calculated for the study area equalled 20 per cent. The Visual MODFLOW software was used for the purpose of modelling in the saturated zone. Hydrogeological parameters of the model layers, inclusive of hydraulic conductivity, were defined on the basis of results of column tests that were carried out under laboratory conditions (column experiment). Related to the dose of mineral nitrogen used in precision fertilisation (80 kg N/ha), scenarios of the spread of nitrates in the soil-water environment were worked out. The absolute residual mean error calculated for nitrate concentrations obtained from laboratory and modelling studies equalled 0.188 mg/L, the standard error of the estimate equalling 0.116 mg/L. Results obtained were shown graphically in the form of hydroisohypse maps and nitrate isolines. Conclusions were drawn regarding the possibility of using numerical modelling techniques in predicting transport and fate of nitrates from fertilisers applied in precision agriculture systems.
W latach 2013–2019 PIG-PIB podjął się realizacji zadania obejmującego dokumentowanie zasobów dyspozycyjnych wód podziemnych na potrzeby przeprowadzenia bilansów wodnogospodarczych. Jednym z obszarów bilansowych dokumentowanych bezpośrednio przez PIG-PIB jest zlewnia Wisłoki wraz z częścią zlewni Wielopolki, która obejmuje Karpaty fliszowe. Budowa geologiczno-strukturalna zlewni Wisłoki powoduje zróżnicowanie warunków hydrogeologicznych, a największe zasoby wód podziemnych występują w czwartorzędowych osadach dolin rzecznych. Zasoby dyspozycyjne lokowano w nich ze względu na miąższe (jak na warunki karpackie) pakiety utworów dobrze przepuszczalnych. W sytuacji, gdy część zasobów dyspozycyjnych (obliczona metodą hydrologiczną) nie mogła być wykorzystana w danej zlewni bilansowej, z uwagi na przekroczenie dopuszczalnego obniżenia zwierciadła wód podziemnych na obszarach chronionych, zdecydowano się na przesunięcie niewykorzystanych rezerw do rejonów bilansowych położnych w niższych odcinkach rzek, w sposób niekolidujący z ochroną ich przepływów nienaruszalnych.
EN
In 2013–2019, PGI-NRI carries out a project documenting groundwater disposable resources for conducting water-economic balances. Among the balance areas documented directly by the PGI-NRI is the Wisłoka catchment and part of the Wielopolka catchment covering the Flysch Carpathians. The geological and structural structure of the Wisłoka catchment brings about the diversification of hydrogeological conditions, and the largest amounts of groundwater are found in the Quaternary formations of river valleys. Disposable resources were located within them due to the thick (considering the Carpathian conditions) packages of well-permeable sediments. In a situation when part of disposable resources (calculated by the hydrological method) could not be used in a given drainage basin, due to exceeded permissible groundwater table reduction in protected areas, it was decided to transfer unused reserves to balance areas of midwives in lower sections of rivers in a manner that does not interfere with the protection of their minimum acceptable flows.
We demonstrate a new research methodology into flow paths and groundwater resources with in small hard rock basins, where little hydrogeological data is available, a picture may be obtained by modeling. Data has been collected in the Złoty Potok river catchment (area 4.4 sq km), located in the eastern Sudety Mts. (SW Poland). The study area, as for most small hard rock basins in the Sudety Mts. is characterized by: i) steeply sloping terrain, ii) a complex flow system connected to several media, ii) poorly constrained hydrogeological parameters. In such conditions, groundwater models are difficult to implement. To overcome these difficulties, we applied a concept of mixed flow ruled by laws of Darcy (porous media) and Hagen-Poiseuille (fractured media), and the concept of three water-bearing zones, a classic solution for scales of above several sq km, combined with a discrete fracture model. Field data applied for modeling were collected over one year, measuring all manifestations of groundwater occurrence: i) effective infiltration (lysimeter), ii) fracture mapping, iii) stream flow and flow disappearance. As a result of modelling, specific flow domains were identified; which form a system of zones, characterized by different geometries and flow velocities. A new, previously unrecognized zone of considerable importance for water extraction, i.e. fractures in the river valley axis, reaching a deep part of the orogen (up to 300 m b.g.l.) was defined. The relationships investigated allowed prepation of a prognosis for deep groundwater intake locations in poorly described mountainous areas. The success of the solutions obtained in this typical mountainous river basin suggests that this method may be come efficiently and widely used in other hard rock areas. The research undertaken offers an innovative, efficient approach to groundwater resource assessment in hard rock.
Zapewnienie dostaw wody słodkiej dla celów komunalnych i przemysłowych prowadzi w niektórych regionach do nadmiernej eksploatacji istniejących zasobów. W takiej sytuacji znajduje się Leżajsk nad Sanem, którego gospodarka wodna wymaga racjonalizacji. Warunkiem jest ustalenie wielkości odnawialnych zasobów wód podziemnych na podstawie badań wykonanych na modelu hydrogeologicznym. Ich wynikiem jest m.in. odtworzenie naturalnego stanu hydrodynamicznego w holoceńskim poziomie wodonośnym i wskazanie skutków, jakie eksploatacja licznych ujęć studziennych z łączną wydajnością wynoszącą około 9500 m3/d powoduje w środowisku wodno-gruntowym.
EN
In some regions the supply of fresh water for domestic and industrial use leads to excessive exploitation of existing groundwater resources. This is the case of Leżajsk town upon the San River. The water management in this area requires optimization. The principal factor is the determination of renewable groundwater resources based upon the hydrogeological modelling. Among others, the modelling results in reconstruction of natural hydrodynamic conditions within the Holocene groundwater horizon and reveals the impact of exploitation of numerous groundwater intakes discharging totally about 9500 m3/24h on the aquatic environment.
Tradycyjne podejście do metodyki modelowania przepływu wody podziemnej ma niekorzystny wpływ na obecny rozwój tego działu hydrogeologii. Konsekwencją tego jest traktowanie danych wejściowych i wynikowych modeli jako „poprodukcyjne” pozostałości prac, których podstawowym celem jest papierowa mapa zawierająca wyniki lub tabelaryczne zestawienie arbitralnie wybranych wielkości liczbowych charakteryzujących warunki hydrogeologiczne. Szczegółowe i kompletne dane opracowane dla modelu lub uzyskane z symulacji są nieporównywalnie cenniejsze i koszty ich uzyskania są znaczne. Najczęściej jednak dane te przepadają bezpowrotnie. Z tego względu zastosowanie nowych technologii geoinformatycznych i teleinformatycznych do przechowywania i udostępniania tych danych jest sprawą bardzo ważną i wymagającą pilnych prac teoretycznych, eksperymentalnych i aplikacyjnych. Podstawę prawną dla wszelkich działań w tym zakresie stanowi dyrektywa INSPIRE, a podstawą w zakresie standardów są specyfikacje OGC i normy grupy ISO 19100.W tekście zawarte są przykłady koncepcji rozwiązań opartych na tych dokumentach.
EN
Traditional approach to the methodology of groundwater flow modelling has adverse impact on current development of this branch of hydrogeology. In consequence, input data and results of simulations are treated as “postproduction” remains of work, which fundamental aim is a paper map comprising results or tabular list of arbitrarily selected numerical quantities describing hydrogeological conditions. Detailed and complete data for a model or obtained from simulation are incomparably more valuable, and acquiring costs are considerable.However, most often we lose these data irretrievably. For this reason, application of new geospatial data technologies and data communication technologies for storage and making these data available is currently a very important issue and needs urgent theoretical, experimental and implicational works. The INSPIRE Directive is a legislative base for all activities in this scope, together with OGC specifications and ISO 19100 group of standards. There are examples of conceptual solutions based on these documents in the text.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Since 1993 the Environment Modelling Centre (EMC) of the Riga Technical University has been active in the field of developing methodologies and special software for creating hydrogeological models (HM). In this paper, these tools applied together with commercial ones are described. on the example of complicated HM created for the Noginsk District, Moscow Region, Russia. The model was obtained due to efforts of joined teams of EMC, the All-Russian Research Institute for Hydrogeology and Engineering Geology and the Geological Survey of Denmark and Greenland.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.