Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 75

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hydrogen sulfide
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
For the first time, the impact of the composition of gossypol resin and IB-1 reagent, prepared in a 3:1 ratio and conventionally named HS-1, on the corrosion rate in hydrogen sulfide formation water has been investigated under laboratory conditions. Concentrations of 20, 40, 60, 80 mg/l of the new composition were used. During the experiments, a formation water sample taken from well No. 1082 of “Bibiheybatneft” OGPD, SOCAR, served as the electrochemical corrosion medium for the study. To conduct a comparative analysis, gossypol resin, IB-1 inhibitor, and HS-1 composition were used. Concentrations of 50, 100, 150, 200 mg/l of gossypol resin and 10, 15, 20, and 25 mg/l of IB-1 inhibitor were employed in the experiments. Numerous laboratory experiments revealed that the optimal consumption rate for the HS-1 inhibitor is 100 mg/l, for gossypol resin it is 200 mg/l, and for the IB-1 inhibitor it is 25 mg/l. These experiments were conducted under dynamic conditions over six hours. It was determined that the newly developed HS-1 composition offers superior protection in an aggressive medium containing hydrogen sulfide compared to its constituent components, gossypol resin, and IB-1 inhibitor. Specifically, as the concentration of gossypol resin in formation water increases from 50 to 200 mg/l, the corrosion protection effect ranges from 60–82%. When the concentration of IB-1 inhibitor varies between 10–25 mg/l in a hydrogen sulfide medium, the protection effect lies between 65-90%. In the aggressive medium of hydrogen sulfide formation water, increasing the concentration of the new HS-1 composition from 30–80 mg/l results in an enhancement of its electrochemical corrosion protection effect, ranging from 74–98%. Upon analyzing the results of numerous laboratory experiments, it was found that the optimal consumption rate of gossypol resin for corrosion protection in an aggressive medium with hydrogen sulfide is 200 mg/l, the consumption rate of IB-1 inhibitor is 25 mg/l, and for the HS-1 composition is 80 mg/l. The corrosion rates for gossypol resin in the concentrations of 50, 100, 150, 200 mg/l is 1.72, 1.38, 1.12, 0.78 g/m2  · h and retardation coefficient is 2.50, 3.10, 3.84, 5.51, respectively. Corrosion rate of IB-1 inhibitor concentration in the amount of 10, 15, 20, and 25 mg/l is 1.5, 1.12, 0.78, 0.43, and retardation coefficient is 2.86, 3.84, 5.51, 10.0, respectively. The corrosion rates for the new HS-1 composition at concentrations of 20, 40, 60, 80 mg/l is 1.12, 0.73, 0.34, 0.08, and the retardation coefficient is 3.84, 5.89, 12.64, 53.75, respectively. Comparing the corrosion rate values obtained for all three reagents with the corrosion rate for hydrogen sulphide formation water shows that new HS-1 composition has a higher effectiveness compared to its constituent components.
PL
Po raz pierwszy w warunkach laboratoryjnych zbadano wpływ składu żywicy gossypolowej i odczynnika IB-1, przygotowanej w stosunku 3:1 i umownie nazwanej HS-1, na szybkość korozji w wodzie złożowej zawierającej siarkowodór. Zastosowano stężenia 20, 40, 60, 80 mg/l nowego składu. Podczas eksperymentów jako elektrochemiczne medium korozyjne do badań posłużyła próbka wody złożowej pobrana z odwiertu nr 1082 "Bibiheybatneft" OGPD, SOCAR. W celu przeprowadzenia analizy porównawczej w doświadczeniach wykorzystano żywicę gossypolową, inhibitor IB-1 oraz komponent HS-1. Pobrano 50, 100, 150, 200 mg/l żywicy oraz 10, 15, 20 i 25 mg/l inhibitora IB-1. Liczne badania laboratoryjne wykazały, że optymalne zużycie inhibitora HS-1 wynosi 100 mg/l, żywicy gossypolowej 200 mg/l, a inhibitora IB-1 25 mg/l. Doświadczenia te prowadzono w warunkach dynamicznych przez sześć godzin. Stwierdzono, że nowo opracowana kompozycja HS-1 zapewnia lepszą ochronę w agresywnym środowisku zawierającym siarkowodór w porównaniu z jej składnikami, żywicą gossypolową i inhibitorem IB-1. Zatem gdy stężenie żywicy gossypolowej w wodzie złożowej wzrośnie o 50–200 mg/l, efekt ochrony przed korozją przyjmuje wartość w przedziale 60–82%. Gdy stężenie inhibitora IB-1 waha się w granicach 10–25 mg/l w środowisku siarkowodorowym, efekt ochronny wynosi 65–90%. W agresywnym środowisku wód złożowych zawierających siarkowodór zwiększenie stężenia nowej mieszaniny HS-1 w zakresie 30–80 mg/l powoduje wzrost jej elektrochemicznego efektu antykorozyjnego w granicach 74–98%. Analizując wyniki licznych eksperymentów laboratoryjnych stwierdzono, że optymalne zużycie żywicy gossypolowej do ochrony przed korozją w agresywnym środowisku z siarkowodorem wynosi 200 mg/l, zużycie inhibitora IB-1 25 mg/l, a stopień zużycia kompozycji HS-1 80 mg/l. Szybkość korozji żywicy gossypolowej w stężeniach 50, 100, 150, 200 mg/l wynosi 1,72; 1,38; 1,12; 0,78 g/m2  ·h, a współczynnik opóźnienia wynosi odpowiednio 2,50; 3,10; 3,84; 5,51. Szybkość korozji przy stężeniu inhibitora IB-1 w ilościach 10, 15, 20 i 25 mg/l wynosi 1,5; 1,12; 0,78; 0,43, a współczynnik opóźnienia wynosi odpowiednio 2,86, 3,84, 5,51, 10,0. Szybkość korozji nowego składu HS-1 w stężeniach 20, 40, 60, 80 mg/l wynosi 1,12; 0,73; 0,34; 0,08, a współczynnik opóźnienia wynosi odpowiednio 3,84; 5,89; 12,64; 53,75. Porównanie wartości szybkości korozji uzyskanych dla wszystkich trzech odczynników z szybkością korozji w wodzie złożowej zawierającej siarkowodór wskazuje, że nowa kompozycja HS-1 ma wyższą skuteczność w porównaniu do jej poszczególnych składników.
EN
Looking for alternative sources of energy to generate electricity has been a hot topic for society for a very long time. The need to replace current energy resources such as fuel, oil, and gas is increasing, and the replacement comes from energy obtained from the wind, sun, and sea waves. In many cases, valuable raw materials can be obtained in addition to energy production, while having a significant environmental effect simultaneously. The shortage of energy and raw material resources in many countries stimulates the growth of interest in all potential sources of energy – solar, wind, wave, tidal – has lead to accelerating the demand for oil and gas, shale gas, as well as the expansion of the areas for the cultivation of technical crops for biofuels. Classical energy resources like oil, gas and coal are serious polluters of the natural environment. Especially harmful is the release of carbon dioxide and sulfur oxides during the exploitation of these resources. A significant energy raw material potential of non-traditional resources lies in the waters and bottom of the Black Sea, which is a natural geobiotechnological reactor, capable of producing a variety of energy raw resources. This paper discusses the use of hydrogen sulfide available in the Black Sea waters to produce energy and useful industrial products and proposes the respective. The technology also has an ecological effect in terms of the purification of the hydrogen sulfide pool. The paper also discusses some technologies for the separation of hydrogen sulfide to hydrogen and sulfur. An estimation of the heat value of hydrogen sulfide in the water of the Black Sea is also presented.
PL
Poszukiwanie alternatywnych źródeł energii do produkcji energii elektrycznej od dawna jest gorącym tematem w społeczeństwie. Konieczność zastąpienia obecnych źródeł energii, takich jak paliwo, ropa naftowa i gaz, jest coraz większa, a pochodzi ono z energii pozyskiwanej z wiatru, słońca i fal morskich. W wielu przypadkach, oprócz produkcji energii, można pozyskać cenne surowce, mając jednocześnie znaczący wpływ na środowisko. Niedobór surowców energetycznych i surowcowych w wielu krajach stymuluje wzrost zainteresowania wszystkimi potencjalnymi źródłami energii – słońcem, wiatrem, falami, pływami – doprowadził do przyspieszenia popytu na ropę i gaz, gaz łupkowy, a także ekspansji powierzchni pod uprawę roślin technicznych na biopaliwa. Klasyczne źródła energii, takie jak ropa naftowa, gaz i węgiel, poważnie zanieczyszczają środowisko naturalne. Szczególnie szkodliwe jest wydzielanie się dwutlenku węgla i tlenków siarki podczas eksploatacji tych zasobów. Znaczący potencjał surowcowy energii nietradycyjnych zasobów tkwi w wodach i dnie Morza Czarnego, które jest naturalnym reaktorem geobiotechnologicznym, zdolnym do produkcji różnorodnych surowców energetycznych. W artykule omówiono wykorzystanie siarkowodoru dostępnego w wodach Morza Czarnego do produkcji energii i użytecznych produktów przemysłowych oraz zaproponowano odpowiednie rozwiązania. Technologia ma również efekt ekologiczny w zakresie oczyszczania basenu siarkowodoru. W artykule omówiono również niektóre technologie rozdziału siarkowodoru na wodór i siarkę. Przedstawiono również oszacowanie wartości opałowej siarkowodoru w wodach Morza Czarnego.
EN
The corrosion protection effect of the new S-1 reagent in media with the pH values of 2.0, 4.0, 6.0, as well as carbon dioxide and hydrogen sulfide added separately and combined to the mentioned media, was first tested under laboratory conditions. The protective effect of reagent S-1 was weak in the corrosion medium without hydrogen sulfide and carbon dioxide. However, as the acidity of the medium and the concentration of the reagent increases, the corrosion protection efficiency of the inhibitor also increases. The highest effect is observed at pH = 2.0 and reagent concentration of 30 mg/l. The corrosion protection effect of the reagent reaches 97% under these conditions. In the media with pH = 4.0 and pH = 6.0 without carbon dioxide and hydrogen sulfide, the protective effect of the inhibitor at the optimal concentration of 30 mg/l is 66% and 64%, respectively. In the medium with added carbon dioxide, the protective effect of inhibitor S-1 decreases at pH = 2.0 and, on the contrary, increases at the values of pH = 4.0 and pH = 6.0. Also, as the pressure of carbon dioxide in the medium increases, the protective effect of inhibitor S-1 increases. When hydrogen sulfide is added to the medium, it causes an increase in the corrosion rate and the protection efficiency of inhibitor S-1. However, in the medium without inhibitor, the increase of hydrogen sulfide concentration only up to CH2S = 400 mg/l is accompanied by an increase in the corrosion rate at all values of pH. The addition of 1000 mg/l of hydrogen sulfide to the corrosion medium leads to the decrease in the corrosion rate in the medium without inhibitors and a slight decrease in the protective effect at the concentration of the inhibitor Cinh = 10 mg/l. As the concentration of inhibitor S-1 increases in the medium with the addition of carbon dioxide and hydrogen, its corrosion protection effect also increases. In the range of Cinh = 10–30 mg/l, when PCO2 = 0.5 atm and CH2S = 200 mg/l, the protective effect is estimated at 38–99%, and when CH2S = 1000 mg/l, it is estimated at 17–79%. At PCO2 = 1.0 atm, the value of protective effect is 22–95% and 14–76%, and finally at PCO2 = 2.0 atm, the value of the corrosion protection effect of inhibitor S-1 is estimated at 44–92% and 15–75%, respectively. The coexistence of carbon dioxide and hydrogen sulfide in an aggressive medium leads to an increase in the protective effect of inhibitor S-1 compared to the medium containing only carbon dioxide, and reduces it in comparison to the medium with hydrogen sulfide. An increase in carbon dioxide pressure in the presence of hydrogen sulfide causes a decrease in the protective effect of inhibitor S-1. The protective effect of inhibitor S-1 is lower in the medium with hydrogen sulfide concentration of 1000 mg/l compared to a concentration of 200 mg/l. This case is also observed in the carbon dioxide free medium.
PL
Działanie antykorozyjne nowego odczynnika S-1 w agresywnych mediach o pH 2,0; 4,0; 6,0, a także dwutlenku węgla i siarkowodoru dodawanych osobno lub łącznie do tych mediów, zostało najpierw zbadane w warunkach laboratoryjnych. Działanie ochronne odczynnika S-1 było słabe w środowisku korozyjnym bez siarkowodoru i dwutlenku węgla. Jednak wraz ze wzrostem kwasowości medium i stężenia odczynnika wzrasta również skuteczność inhibitora w ochronie przed korozją. Najlepsze działanie antykorozyjne odnotowano przy wartości pH = 2,0 i stężeniu odczynnika 30 mg/l. Skuteczność ochronna odczynnika wynosi wówczas 97%. W medium o pH = 4,0 i pH = 6,0 bez dwutlenku węgla i siarkowodoru skuteczność ochronna inhibitora przy optymalnym stężeniu 30 mg/l wynosi odpowiednio 66 i 64%. W medium z dodatkiem dwutlenku węgla działanie ochronne inhibitora S-1 maleje przy wartości pH = 2,0 i odwrotnie wzrasta przy wartościach pH = 4,0 i pH = 6,0. Ponadto, wraz ze wzrostem ciśnienia dwutlenku węgla w środowisku wzrasta skuteczność ochronna inhibitora S-1. Dodanie siarkowodoru do medium powoduje wzrost tempa korozji i skuteczności ochronnej inhibitora S-1. Jednak w medium bez inhibitora wzrostowi stężenia siarkowodoru nawet do tak niskiej wartości jak CH2S = 400 mg/l towarzyszy wzrost tempa korozji przy wszystkich wartościach pH. Dodanie 1000 mg/l siarkowodoru do medium korozyjnego prowadzi do zmniejszenia tempa korozji w medium bez inhibitorów i nieznacznego zmniejszenia działania ochronnego przy stężeniu inhibitora Cinh = 10 mg/l. Wraz ze wzrostem stężenia inhibitora S-1 w medium z dodatkiem dwutlenku węgla i siarkowodoru, zwiększa się również jego działanie antykorozyjne. W zakresie Cinh = 10–30 mg/l, gdy PCO2 = 0,5 atm i CH2S = 200 mg/l, skuteczność ochronną szacuje się na 38–99%, natomiast przy CH2S = 1000 mg/l na 17–79%. Dla PCO2 = 1,0 atm skuteczność ochronna wynosi od 22–95% do 14–76%, a przy PCO2 = 2,0 atm skuteczność antykorozyjną inhibitora S-1 szacuje się odpowiednio na 44–92% i 15–75%. Jednoczesne występowanie dwutlenku węgla i siarkowodoru w agresywnym medium zwiększa skuteczność ochronną inhibitora S-1 w stosunku do medium zawierającego tylko dwutlenek węgla i zmniejsza ją w porównaniu do medium z siarkowodorem. Wzrost ciśnienia dwutlenku węgla w obecności siarkowodoru powoduje zmniejszenie skuteczności ochronnej inhibitora S-1. Ulega ona także zmniejszeniu w środowisku o stężeniu siarkowodoru 1000 mg/l w porównaniu do stężenia 200 mg/l. Ten przypadek obserwuje się również w środowisku bez dodatku dwutlenku węgla.
PL
Siarkowodór w biogazie zasilającym jednostki CHP (Combined Heat and Power), w pewnych stężeniach powoduje korozję komór spalania, zanieczyszcza i zakwasza olej silnikowy, wpływa destrukcyjnie na elementy silnika takie jak uszczelnienia, gniazda zaworowe, rozrząd. Paliwo w postaci gazu pofermentacyjnego, zanim zasili jednostki kogeneracyjne, musi spełnić normy stawiane przez producenta danej jednostki. Czy uda się osiągnąć takie wartości, zależy przede wszystkim od tego, jakie jest stężenie siarkowodoru w biogazie oraz jaką metodę odsiarczania zastosujemy. Celem przeprowadzonych badań było porównanie efektywności wiązania siarki w osadzie poprzez dawkowanie koagulantów żelazowych bezpośrednio do wsadu, przed wpompowaniem do komory fermentacyjnej. Otrzymane wyniki wskazują skuteczność obu badanych środków, jednakże zastosowanie PIX 211 dało możliwość utrzymania siarkowodoru w biogazie na poziomie 300ppm (±10%) przy zastosowaniu dwukrotnie mniejszej dawki niżeli w przypadku PIX 113. Pozytywne aspekty suplementacji osadu użytymi środkami, to między innymi obniżenie stężenia H2S w biogazie, wzrost jego produkcji, poprawa parametrów jakościowych biogazu takich jak procentowy udział metanu.
EN
Hydrogen sulphide in biogas supplying Combined Heat and Power units (CHP), in some concentrations contribute to corrosion of combustion chambers, contaminates and acidifies engine oil, has a destructive effect on engine components such as seals, valve seats, and timing. Produced biogas must meet the standards set by the manufacturer before powering cogeneration units. Whether such values can be achieved depends primarily on the hydrogen sulphide concentration in biogas and the desulphurization method used. The aim of the research was to compare the effectiveness of sulfur fixation in the sludge by dosing iron coagulants directly into the raw sludge before pumping into the fermentation chamber. The obtained results confirmed the effectiveness of both tested agents, however, the use of PIX 211 made it possible to maintain hydrogen sulphide in biogas at the level of 300 ppm (± 10%) using almost half the dose of PIX 113. Positive aspects of sludge supplementation with the tested agents are increase of biogas production and decrease of H2S content, improving the quality parameters of biogas such as the methan participation.
5
Content available Metody usuwania siarkowodoru z gazów procesowych
PL
Artykuł stanowi przegląd najczęściej stosowanych metod utylizacji siarkowodoru z gazów przemysłowych. W pracy skupiono się przede wszystkim na postępach w zakresie katalitycznego utleniania H2S oraz jego adsorpcji. Dane odnośnie współcześnie otrzymywanych katalizatorów oraz adsorbentów zostały omówione przez autorów oraz zestawione w tabelach.
EN
The issue of utilization of hydrogen sulfide and the reduction of its emissions is a key issue and results from its extraordinary toxicity to both humans and the environment. Due to the strong corrosive properties of H2S, its removal is necessary in every industrial process in which it is present. As the most significant desulfurizing process is considered the Claus process. It is the most widely used method and it is estimated that around 90 - 95% of all recovered sulfur in the world comes from this process. However, the Clauss plant outlet gas typically contains 3 to 5% H2S, so further processes are still required to reduce the hydrogen sulfide concentration to regulations-acceptable levels. This is usually done by catalytic hydrogen sulfide oxidation. Alumina is used as the most common catalyst. Contemporary research in this area focuses on modifying the hierarchical pore structure of Al2O3 and testing obtained alumina as a carrier for active ingredients such as metals and metal oxides. An interesting solution proposed by modern researchers may also be the use of silicon and titanium oxides as carriers for vanadium oxide. An alternative solution to the catalytic combustion of hydrogen sulfide is chemisorption. Theoretically, chemisorption allows the achievement of much lower concentrations of hydrogen sulfide at lower operating costs. The most popular adsorbents include zeolites and activated carbons. Modern research in this field consists in obtaining composite materials based on zeolites or activated carbons. This is usually done by impregnating said materials with metal/metal oxides. It is worth noting that in the case of activated carbons, the interest of scientists also includes obtaining activated carbons from the most ecological materials, such as biomass. Given the growing interest in green materials in general, interest in biochars can be expected to increase in the future.
PL
Odpowiedni dobór detektorów w chromatografii gazowej pozwala na dokładniejsze pomiary analizowanych związków. Wybór detektora zależy od substancji, które chcemy oznaczać, od ich procentowej zawartości w analizowanym gazie, a w niektórych przypadkach również od matrycy próbki, w której dany związek się znajduje. Związki siarki są bardzo częstym przedmiotem badań w laboratoriach geochemicznych. Jak dotąd zdecydowanie najpopularniejszym dostępnym na rynku detektorem do pomiaru ich stężeń jest FPD, używany również w Laboratorium Geochemii Nafty i Gazu INiG – PIB. Jednak w zależności od rodzaju i ilości związków siarki można, po opracowaniu odpowiedniej metodyki, użyć również detektorów FID i TCD. Przy badaniu bardzo niskich stężeń siarkowodoru zgodnie z doniesieniami literaturowymi sugerowane jest użycie detektora SCD, a przy badaniach stężeń wysokich można zastosować miareczkowanie jodometryczne. W ramach badań została wykonana kalibracja oraz przeprowadzono elementy walidacji metodyk oznaczania siarkowodoru na zróżnicowanych poziomach stężeń z użyciem detektorów FPD i TCD. Została sprawdzona specyficzność oraz selektywność zastosowanych metodyk badawczych. Ustalono granicę wykrywalności oraz oznaczalności, obliczono powtarzalność, a także liniowość. Kalibracja oraz wybrane elementy walidacyjne pokazały, jakie są możliwości zastosowanych detektorów, a także dały wiedzę, na jakim poziomie należy oznaczać siarkowodór przy użyciu poszczególnych detektorów powszechnie wykorzystywanych w chromatografii gazowej. Wykonane badania udowodniły, że opracowane metodyki spełniają założone kryteria akceptacji dla wybranych elementów walidacji. W wyniku przeprowadzonych badań stwierdzono, że detektor FPD jest adekwatnym wyborem przy badaniach siarkowodoru w zakresie od 1 ppm do 10 ppm, natomiast TCD jest odpowiedni do oznaczeń wyższych stężeń siarkowodoru, tj. od 0,5% do 5%.
EN
Appropriate selection of detectors in gas chromatography allows for more accurate measurements of the analyzed compounds. The choice of the detector depends on the substances one needs to determine and the percentage share in the analyzed gas, and in some cases also on the sample matrix. Sulfur compounds are a very frequent subject of examination in geochemical laboratories. Until now, the most popular detector commercially available for measuring their concentrations is FPD, also used in the Oil and Gas Geochemistry Laboratory of the Oil and Gas Institute – National Research Institute. However, depending on the type and amount of sulfur compounds, FID and TCD detectors can also be used (when developing an appropriate methodology). In case of low concentrations of hydrogen sulfide, the use of an SCD detector is suggested according to publications, while for high concentrations, iodometric titration can be used. As a part of the research, calibration was performed and elements of validation of the methodologies for the determination of hydrogen sulfide at various concentration levels with the use of FPD and TCD detectors were carried out. The specificity and selectivity of the applied analysis methodologies were checked. The limit of detection and quantification was determined, and the repeatability and linearity for the hydrogen sulfide were calculated. The calibration and selected validation elements showed the capabilities of the detectors used, as well as the knowledge at what level hydrogen sulfide should be determined by individual detectors, commonly used in gas chromatography. This research proved that the developed methodologies meet the assumed acceptance criteria for selected elements of validation. As a result of the conducted research, it was found that the FPD detector is an adequate choice for hydrogen sulfide tests in the range from 1 ppm to 10 ppm, while TCD is suitable for the determination of higher concentrations of hydrogen sulfide, i.e. from 0.5% to 5%.
EN
The paper shows the possibility of using chlorophyll-synthesizing microalgae of Chlorella vulgaris to purify biogas from carbon dioxide (CO2), hydrogen sulfide (H2S) and ammonia (NH3). Experimental dependences of the dynamics of CO2 uptake by microalgae under the action of H2S inhibitor and NH3 activator were presented. A mathematical description of the growth of biomass of microalgae Chlorella vulgaris, depending on the concentration of hydrogen sulfide and ammonia, was obtained. The optimal values of hydrogen sulfide and ammonia concentration for the efficient process of carbon dioxide uptake by chlorophyll-synthesizing microalgae Chlorella vulgaris from biomethanization gas were established.
EN
This article presents the results of research intended to obtain a complex alumina-iron reagent based on natural diatomite and industrial products of alumina production for wastewater purification from hydrogen sulfide. The material composition of the obtained samples using X-ray diffraction analysis was determined. The results of interaction research in the NaFeO2 – H2S – H2O system at 25°С are given. The results of research on wastewater purification from hydrogen sulfide in Almaty city with the use of ferric sulfate, ferric chloride, sodium ferrite and a complex reagent containing iron at the content of 5.1 mg/l H2S in the initial sample of wastewater were presented.
EN
In certain concentrations, hydrogen sulfide – occurring in gaseous fuel – corrodes combustion chambers, contaminates and acidifies engine oil and has a destructive effect on engine seal components, valve seats and timing. Fuel in the form of digestate gas, before powering cogeneration units, must meet the standards set by the manufacturer of the unit. Whether such values can be achieved depends primarily on the concentration of hydrogen sulfide and the desulfurization method used. The purpose of the study was to determine the effectiveness of sulfur fixation in the sludge by dosing the PIX 113 coagulant directly into the feedstock before pumping into the chamber. The results obtained confirmed the effectiveness of the coagulant and provided the basis for conducting further studies using other products based on iron compounds. During the experiment, there were no negative effects of applying the coagulant to the batch just before pumping into the chamber. The positive aspects of sludge supplementation with the tested agent included an increase in biogas production due to a decrease in the H2S concentration and an improvement in biogas quality parameters – CH4 and CO2.
EN
In this work a fixed bed column was used to study the adsorption capability of Jordanian natural zeolite for capturing H2S gas. The effect of pressure, inlet concentration, and zeolite particles size was study, and the breakthrough curves were obtained. The results indicate that Jordanian natural zeolite is an effective material for capturing H2S gas at a pressure around 5 atm or more and the adsorption capacity is comparable to commercial zeolite. At a pressure of 6atm or more, the saturation adsorption capacity of zeolite is about 0.24 g H2S/g zeolite. For pressure more than 6 atm the adsorption capacity remains almost the same, and therefore, 6 atm is the suitable operating pressure for Jordanian natural zeolite to capture H2S.
PL
Każdy biogaz powstały w wyniku fermentacji substancji organicznych ma w swoim składzie siarkowodór, który jest substancją niepożądaną. Gaz ten wpływa destrukcyjnie na wszystkie elementy instalacji, a w przypadku, gdy biogaz z zawartością siarkowodoru zasila zespół prądotwórczy, może także negatywnie wpływać na silnik. Bezpośrednie działanie na podzespoły silnika można zauważyć tylko przy wysokich stężeniach siarkowodoru, natomiast przy niższych stężeniach spalanie siarkowodoru powoduje przede wszystkim zmianę własności oleju smarnego, a w szczególności jego pH oraz liczby TAN i TBN. Prawidło eksploatowany silnik napędzany biogazem, którego olej smarny nie ma przekroczonych parametrów dopuszczonych przez producenta, jest odporny na siarkowodór zawarty w biogazie. Należy jednak pamiętać, że siarkowodór zawarty w biogazie może skrócić żywotność oleju nawet czterokrotnie, co generuje znaczne koszty eksploatacji zespołów prądotwórczych.
EN
The EST system – emission-free sewage transport is one of many methods used to counteract and limit the formation of hydrogen sulfide in the sewage system. EST method is the environment and human friendly, and effective at the same time. This solution applies aeration and flushing of pressure pipelines using compressed air with closed vent valves. The paper presents the results of field tests of the EST system, which also verified previous laboratory tests carried out in a broader range. The tests were carried out on two different delivery pipelines (Object-1, Object-2), consisting of several kilometers long sections Pump Station – Expansion well with hydrogen sulfide concentration measurement. The results show that the EST system is an effective solution for controlling hydrogen sulfide in a pressure sewage system. The application of the EST system caused an immediate decrease in H2S concentration under 50 ppm. The measurements were taken in the expansion well, where short-term outbursts of large loads of hydrogen sulfide were observed during sewage pumping. Purges carried out 1-2 times a day, caused a decrease in instantaneous gas load (from the average level of 758 mg H2S/pump cycle at Object-1 to 15 mg H2S/cycle and from 3 914 to 322 mg H2S/cycle at Object-2). Results of field studies have also shown that individual optimization of the EST system operation for a selected section of the pressure sewage system (length of the aeration cycle and its frequency during the day), may control the concentration of H2S. The EST system, reducing the concentration of H2S by over 90%, ensures the safety of sewage system operation and decreases its impact on the surrounding environment.
PL
Wśród wielu stosowanych metod przeciwdziałania i ograniczenia powstawania siarkowodoru, jedną z bardziej przyjaznych zarówno dla środowiska, jak i człowieka, a jednocześnie skuteczną jest system BTS – bezemisyjnego transportu ścieków. Rozwiązanie to bazuje na napowietrzaniu oraz płukaniu rurociągów tłocznych sprężonym powietrzem przy zamkniętych zaworach odpowietrzających. W niniejszym artykule przedstawiono wyniki testów terenowych systemu BTS, które były jednocześnie weryfikacją przeprowadzonych wcześniej w szerszym zakresie badań laboratoryjnych. Badania przeprowadzano na dwóch różnych rurociągach tłocznych (Obiekt-1, Obiekt-2), obejmujących kilkukilometrowe odcinki Pompownia – Studnia rozprężna z pomiarem stężenia siarkowodoru. Uzyskane wyniki wykazały, że system BTS jest skutecznym rozwiązaniem kontroli siarkowodoru w kanalizacji ciśnieniowej. Bezpośrednio po jego zastosowaniu stężenie H2S obniżało się do wartości <50 ppm. Pomiary wykonywane były w studni rozprężnej, w której to obserwowano chwilowe wyrzuty dużych ładunków siarkowodoru podczas pompowania ścieków. Przeprowadzone przedmuchy płuczące rurociągu w cyklu 1-2 razy na dobę pozwoliły na obniżenie chwilowego ładunku gazu z poziomu średniego 758 mg H2S/cykl pompowy dla Obiektu-1 do 15 mg H2S/cykl oraz z 3914 do 322 mg H2S/cykl dla Obiektu-2. Badania terenowe wykazały, że w oparciu o indywidualną optymalizację pracy systemu BTS dla wybranego odcinka sieci kanalizacji tłocznej, w zakresie długości cyklu napowietrzania oraz jego częstotliwości w ciągu doby można uzyskać kontrolę stężenia siarkowodoru zapewniając bezpieczeństwo w zakresie eksploatacji kanalizacji oraz oddziaływania na otaczające środowisko, zmniejszając stężenie gazu o ponad 90%.
PL
Przedstawiono wyniki badań terenowych systemu nowej, pięcioletniej wiejskiej kanalizacji sanitarnej grawitacyjno-tłocznej w zakresie określenia warunków fizykochemicznych panujących w kanałach sanitarnych wskazujących na występowanie korozji studni betonowych oraz powstawanie odorów.
EN
Field studies were performed on a 15 km long section of the sewage system, which comprised 6 settlements and consisted of pipelines and wells. System contained of pressure and gravity plastics pipelines and concrete wells. Sewage from the furthest located settlement was pumped to a well in subsequent settlements. After connection with local sewage, it was pumped further down to the wastewater treatment plant. COD and BOD₅, temp., sewage pH, cond., petroleum ether extractable matter as well as the content of sulfides and dissolved O were detd. In addn. contents of H₂S, NH₃, MeH in the air inside the well were also measured. Correlations between parameters of air, sewage and corrosion of concrete were also studied. The biggest traces of corrosion were obsd. in expansion wells directly connected with the main pressure pipelines transporting total sewage from each settlement. In the expansion wells, where concrete corrosion was found, the concn. of H₂S in the air above the sewage exceeded 200 ppm. A strong correlation between the H₂S and NH₃ content in the air in the wells was also obsd.
EN
The work presents the results of experimental studies on the air purification efficiency after accelerated composting of a mixture of cattle manure and straw in a chamber-type biofermenter. The operation of an experimental plant that simulates this process was described. A process optimization criterion was established, its values were determined for each of the pollutants – ammonia and hydrogen sulfide. The maximum purification efficiency for ammonia was 92%, achieved at 47% moisture content of the filtering material and 58% compost weight parts at 30 °C. For hydrogen sulfide, the maximum purification efficiency was 95%, achieved at 50% moisture content of the filtering material and 52% compost weight part at 28 °C.
EN
The aim of the research was to determine changes in the elemental composition of concrete under the influence of exposure to hydrogen sulphide in the existing sewage system. The system operator pointed to significant problems with odours in this system. The research included a fragment of the pressure sewage system. The concentration of gases: hydrogen sulphide, ammonia and methane was measured in selected wells. High concentrations of hydrogen sulphide (over 200 ppm) were recorded in the studies. Concrete samples were taken from the internal walls of the well for testing. The samples were used for a microscopic analysis of their composition, using an electron microscope with an EDS attachment. Also, concrete samples from a new sewage well were tested to compare their elemental composition. Gas measurements confirmed the problem of odors, while the analysis of the elemental composition showed a significant proportion of sulphur(from 7.53% to 42.9%) on the surface of the well compared to the reference sample (0%).
PL
Siarkowodór jest gazem silnie toksycznym, dlatego też niezwykle ważne staje się jego usunięcie z instalacji wodnych, szczególnie w gospodarstwach domowych. W artykule przeanalizowano możliwe przyczyny obecności siarkowodoru w wodzie, a także dostępne na rynku urządzenia do jego usunięcia. Spośród wszystkich możliwych rozwiązań wybrano trzy najatrakcyjniejsze dla danej sytuacji i rozpatrzono je pod względem technicznym.
EN
Hydrogen sulfide is a highly toxic gas, and therefore becomes extremely important to remove it on the water systems, especially in households. The article analyzes the possible causes of the presence of hydrogen sulfide in the water, as well as commercially available equipment for its removal. From among all possible solutions, the three most attractive for a given situation were selected and considered in technical terms.
PL
Siarkowodór jest gazem silnie toksycznym, dlatego też niezwykle ważne staję się przedstawienie jego wpływu na organizm człowieka, szczególnie w kontekście zagrożenia pochodzącego z wód stosowanych w gospodarstwach domowych. W artykule przeanalizowano regulacje prawne odnośnie stężeń tego gazu, przedstawiono jego możliwe pochodzenie w wodzie, a także opisano jego leczniczy oraz szkodliwy wpływ na organizm człowieka.
EN
Hydrogen sulphide is a highly toxic gas. That is why it is very important to present its effect on the human body, especially on the issue of the dangers of the water used in households. The article analyzes the regulations relating to the concentration of this gas, there is shown the possible origin of this gas in water, and a description of its therapeutic and harmful effects on the human body.
EN
The emission of harmful gases from livestock production, including poultry, is growing due to the increasing consumption of poultry meat in the world. This process is inherent to the adverse effects of gases on the environment. Thus, the removal of micro-pollutants becomes a leading task for environmental engineering. Taking into account the problem of harmful gases emission, the article focused on the analysis of gas concentrations in production of the poultry. The concentrations of ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2) were shown together with their impact on the environment and the quality of human life. The attention was directed to this growing problem and the search for new solutions the implementation of which could prevent environmental degradation. This disadvantageous phenomenon is mainly due to the impact of gases produced by the agricultural industry and animal production (80%). Current activities, which are aimed at reducing greenhouse gases generated at source during the production of animals, such as ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2), are focused on maintaining high welfare in the livestock room. Therefore, this article presented a method in which the microbial additive was used to minimize the concentration of harmful gases and emission to the natural environment. The study, which used a new method, was carried out during eight series of production on the poultry farm located in the Opole province. The battery farm consisted of two halls of the same area and with the same forced mechanical ventilation system. The article presents detail characteristics of the tested production cycles conducted under different atmospheric conditions (taking into account mean daily outdoor temperature). Individual cycles also slightly differed in terms of the number of inserted broilers. Small differences also related to the duration of cycles. The study estimated the mean concentration of ammonia (NH3), hydrogen sulfide (H2S) and carbon dioxide (CO2) obtained in each production cycle. The test gases were also assessed in terms of differences [ppm] per individual test series conducted in the control hall and the hall where the formulation containing beneficial micro-organisms was used. The study also measured the overall decline in the concentrations of the tested gases [ppm] in eight production series. Their emission turned out to be lower than the amounts generated in the control hall. The attention was directed to air pollution with offensive odours and the parallel possibility of reducing unpleasant scents by applying the new method using the microbial additive.
PL
Emisja szkodliwych gazów z produkcji zwierzęcej, w tym drobiarskiej, wzrasta ze względu na zwielokrotnienie spożycia mięsa drobiowego na świecie. Proces ten wiąże się nieodłącznie z niekorzystnym oddziaływaniem gazów na środowisko. Usuwanie mikrozanieczyszczeń staje się więc wiodącym zadaniem dla inżynierii środowiska. Biorąc pod uwagę emisję szkodliwych gazów, w artykule tym przeprowadzono analizę stężeń gazów w trakcie produkcji drobiu. Przedstawiono stężenia amoniaku (NH3), siarkowodoru (H2S) i dwutlenku węgla (CO2) oraz pokazano ich wpływ na środowisko oraz jakość życia człowieka. Zwrócono uwagę na narastający problem i poszukiwanie nowych rozwiązań, których wdrożenie mogłoby zapobiec procesom degradacji środowiska naturalnego, do którego przyczyniają się przede wszystkim gazy wytwarzane przez środowisko rolnicze i produkcję zwierzęcą (80%). Aktualne działania redukcji gazów powstałych u źródła w trakcie produkcji zwierzęcej amoniaku (NH3),siarkowodoru (H2S), dwutlenku węgla (CO2) skupiają się na utrzymaniu dobrostanu w pomieszczeniu inwentarskim. W związku z tym w artykule tym przedstawiono metodę, w której użyto dodatek mikrobiologiczny w celu minimalizacji stężeń szkodliwych gazów i ich emisji do środowiska naturalnego. Badania, w których zastosowano nową metodę, przeprowadzono podczas ośmiu serii produkcyjnych na fermie drobiu znajdującej się na terenie województwa Opolskiego. Ferma ta składała się z dwóch hal o takiej samej powierzchni i takim samym systemie wentylacji mechanicznej wymuszonej. W artykule szczegółowo przedstawiono charakterystykę badanych cykli produkcyjnych, w których panowały różne warunki atmosferyczne (uwzględniono średnią dobową temperaturę zewnętrzną). W poszczególnych cyklach wystąpiły również nieznaczne różnice w ilości wstawianych brojlerów. W długości trwania cykli również odnotowano nie wielkie różnice. Oszacowano średnie stężenia amoniaku (NH3), siarkowodoru (H2S), dwutlenku węgla (CO2), które uzyskano w poszczególnym cyklach produkcyjnych. Oszacowano również różnice badanych gazów [ppm] przypadające na poszczególne serie badawcze w hali, w której stosowano preparat zawierający pożyteczne mikroorganizmy i porównano z wynikami uzyskanymi w hali kontrolnej. W pracy zmierzono także ogólny spadek stężeń badanych gazów w [ppm] z ośmiu serii produkcyjnych, których emisja okazała się niższa od emisji uzyskanej w hali kontrolnej. Zwrócono uwagę na zanieczyszczenia powietrza atmosferycznego fetorami oraz na równoległą możliwość redukcji nieprzyjemnych doznań zapachowych przez zastosowanie nowej metody z wykorzystaniem dodatku mikrobiologicznego. Przedstawione w artykule zagadnienia stanowią podstawę do dalszych wnikliwych badań, które pomogą przybliżyć skuteczność dodatku mikrobiologicznego, stosowanego przy produkcji drobiarskiej oraz w innych produkcjach związanych z chowem inwentarza żywego, w celu ograniczenia emisji szkodliwych gazów do środowiska.
PL
Jednym ze sposobów zagospodarowania osadów ściekowych może być ich zgazowywanie po wcześniejszej toryfikacji. W pracy przedstawiono wyniki symulacji procesu zgazowania karbonizatu uzyskanego podczas toryfikacji osadu ściekowego. Modelowanie procesu zgazowywania karbonizatu przeprowadzono w zakresie temperatury od 973 K do 1473 K, przy zastosowaniu powietrza jako czynnika zgazowującego. W każdej z temperatur przeprowadzono dziesięć symulacji, podczas których zmieniano wartość stosunku molowego tlenu do węgla (O/C). Uzyskane wyniki wykazały, że karbonizat otrzymany w procesie toryfikacji osadu ściekowego przez 60 min w temperaturze 533°K pozwolił na uzyskanie w temperaturze zgazowywania 973 K i przy stosunku molowym O/C=0,1 gazu syntezowego o największej wartości ciepła spalania (16,44 MJ/m3). Przeprowadzona analiza regresji wielokrotnej pozwoliła określić wpływ parametrów technologicznych (temperatura, stężenie czynnika zgazowującego) na uzyskane wartości ciepła spalania i wartości opałowej otrzymanego gazy syntezowego. Wykazano, że zmienną wpływającą w istotny sposób na proces zgazowania karbonizatu było stężenie czynnika zgazowującego, przy czym wraz z jego wzrostem następowało pogorszenie właściwości paliwowych gazu syntezowego. Parametrem technologicznym wpływającym nieistotnie na ten proces okazała się temperatura zgazowywania karbonizatu, ponieważ wraz z jej wzrostem nie odnotowano większych zmian w kaloryczności uzyskiwanego gazu syntezowego.
EN
One of the methods of sewage sludge management may be its gasification with prior torrefaction. Simulation results of gasification of the carbonized sewage sludge obtained in the process of torrefaction were presented. Modeling of the carbonized sludge gasification process was performed in temperatures ranging from 973 K to 1473 K with air applied as a gasifying agent. Ten simulations were performed at each temperature, during which the molar ratio of oxygen to carbon (O/C) was varied. The results showed that the carbonized sludge obtained by torrefaction for 60 min at 533 K allowed for production of syngas with the highest heating value (16.44 MJ/m3) at gasification temperature of 973 K and the molar ratio O/C=0.1. Multiple regression analysis allowed for determination of statistical significance of technological parameters (temperature, concentration of gasifying agent) on both the lower heating value (LHV) and the higher heating value (HHV) of syngas produced. The obtained results demonstrated that a variable that significantly influenced the gasification process was the gasification agent concentration. With its increase, the fuel properties of syngas deteriorated. There were no more significant changes in calorific value of the obtained syngas with the increase in temperature, therefore temperature was the technological parameter considered to affect the process in a less significant manner.
20
Content available Genesis of hydrogen sulfide in carbonate reservoirs
EN
The article presents the problem of hydrogen sulfide (H2S) occurring in hydrocarbon deposits and copper mines. The presence of this gas is an immense problem due to the necessity of removing it from liquid and gaseous deposits, threat to miner’s life, a negative impact on the equipment and the need of its utilization. The authors try to determine the origin of hydrogen sulfide in sedimentary basins on the basis of literature data concerning Polish and foreign deposits. The main processes of hydrogen sulfide formation are bacterial sulfate reduction (BSR) and thermochemical sulfate reduction (TSR). Because of similar products of these reactions, the unequivocal identification of the process of hydrogen sulfide formation is a difficult problem to solve. It is necessary to use additional geological and geochemical indicators to identify the origin of this gas. In this article Polish and foreign deposits with documented symptoms of the presence of hydrogen sulfide are compared. In addition, major mechanisms of H2S generation and criteria necessary for the occurrence of BSR and TSR processes are presented. The knowledge gained is essential at the stage of planning the exploitation of the reservoirs in order to predict the hydrogen sulfide presence.
PL
W artykule poruszony został problem występowania siarkowodoru w złożach węglowodorów oraz rud miedzi. Obecność tego gazu jest dużym problemem ze względu na konieczność jego usunięcia z ciekłych i gazowych kopalin, zagrożenia życia górników prowadzących eksploatację w kopalniach, negatywny wpływ na urządzenia oraz konieczności jego zagospodarowania. Autorzy wskazują na genezę siarkowodoru w basenach sedymentacyjnych, na podstawie danych literaturowych dotyczących złóż polskich i światowych. Jako główne procesy powstawania H2S przyjmuje się bakteryjną redukcję siarczanów (BRS), a także termochemiczną redukcję siarczanów (TRS). Ze względu na jednakowe produkty tych reakcji, jednoznaczne określenie procesu powstania siarkowodoru jest problemem trudnym do rozwiązania. Niezbędne jest zastosowanie dodatkowych wskaźników geologicznych i geochemicznych w celu określenia genezy tego gazu. W prezentowanej pracy zestawiono krajowe i zagraniczne złoża w których odnotowano przejawy obecności siarkowodoru. Ponadto przedstawiono główne mechanizmy jego powstawania oraz kryteria które muszą zostać spełnione aby zaistniał proces BRS lub TRS. Zdobyta wiedza jest niezbędna na etapie planowania eksploatacji złóż celem przewidzenia możliwości wystąpienia siarkowodoru.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.