Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hydrodynamic coefficients
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A propeller shaft generally experiences three linear forces and three moments, the most important of which are thrust, torque, and lateral forces (horizontal and vertical). Thus, we consider 4DOFs (degrees of freedom) of propeller shaft vibrations. This paper is presented to obtain the vibration equations of the various coupled vibrations of the propeller shaft at the stern of a ship (including coupled torsional-axial, torsional-lateral, axial-lateral, torsional-axial, and lateral vibrations). We focused on the added hydrodynamic forces (added mass and added damping forces) due to the location of the propeller behind the ship. In this regard, the 4DOFs of the coupled vibration (torsional-longitudinal and lateral vibrations in the horizontal and vertical directions) equations of shaft and propeller systems located behind a ship were extracted with and without added mass and damping forces. Also, the effect of mass eccentricity was considered on vibrations occurring at the rear of the ship.
EN
The presented paper numerically carries out the investigation of the hydrodynamic performance of the propeller behind the ship with and without wake equalizing duct (WED). It is mounted in front of the propeller in order to equalize the ship’s wake flow and improve the propeller performance. The computational fluid dynamics (CFD) analysis software STAR-CCM solver was adopted to simulate the KP505 propeller behind the KRISO container ship (KCS) using overlapping grid technology and user-defined functions. To obtain the effect of a –duct on propeller performance, the ship bare hull case, the with-propeller case, and the with-propeller-and-duct case are also computed. Together, these computations provide for a –complete CFD comparison of the duct effects. Also, the Taguchi design of the experiment method is applied to investigate three parameters (angle of attack, trailing edge radius, and chord length) of the duct. Finally, the main dimensions are obtained, and the thrust and torque coefficients are presented and discussed for one blade and whole blades during one cycle. Based on the numerical results, it is indicated that good design increases efficiency by 1.67%, and a –bad design may reduce efficiency by 3.25%. Also, the effect of the WED caused to decrease the pressure pulse by 35.9% in the face side of the propeller blade.
EN
This paper suggests an estimation method for ship’s hydrodynamic coefficients, which is based on the system identification method that calculates an optimum value in a mathematical way. For the purpose of modelling existing ships, this study collects real ship sea trial data as benchmarks. Prior to the optimization, a sensitivity analysis is carried out for easy and effective optimization. The simulation results using optimized coefficients agree well with corresponding benchmarks. Following this, with various trim and draught conditions, this study suggests new estimation formulas that concern all trim and draught conditions. Simulation results applying the estimation formulas are satisfactory in regard to a corresponding benchmark, compared to a result obtained by using an existing regression formula.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.