Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hydro-informatics system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Sediment is a universal issue that is generated in the river catchment and affects the river flow, reservoir capacity, hydropower generation and dam structure. This paper aims to present the result of experimentation in sediment load estimation using various machine learning algorithms as a powerful AI approach. The data was collected from eight locations in upstream area of Ringlet reservoir catchment. The input variables are discharge and suspended solid. It was found that there is strong correlation between sediment and suspended solid with correlation coefficient of R = 0.9 . The developed ML model successfully estimated the sediment load with competitive results from ANN, Decision Tree, AdaBoost and SVM. The best result was produced by SVM (v-SVM version) where very low RMSE was generated for both training and testing dataset despite its more complicated hyperparameters setup. The results also show a promising application of machine learning for future prediction in hydro-informatic systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.