Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hybrid simulation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The goal of this paper is to synthesize the intelligent pitch angle control system under variable wind conditions for the specialized processor that reproduces the operating modes of type-4 wind turbines in real time in the specialized software-hardware hybrid simulation tool. The control schemes using main strategies of a conventional control and an intelligent control with a fuzzy logic have been discussed. The strategy based on a combined pitch control system was adopted. As a result, the authors designed and implemented a comprehensive mathematical model for pitch angle control of wind turbines. The RTDS hardware-software tool was used as a reference for model validation. The results showed a fairly good similarity, therefore, the developed model can be applied to control the pitch angle in a hybrid model of type-4 wind turbines for wind power plants simulating in the large-scale electric power system.
PL
Przedstawiono system sterowania katą turbiny wiatrowej w czasie rzeczywistym. Do sterowania wykorzystano elementy logiki rozmytej. Wykorzystano oprogramowanie i sprzęt. Przeprowadzono symulacje dla różnych prędkości turbiny wiatrowej.
2
EN
Congenital Diaphragmatic Hernia (CDH) is a serious newborn defect requiring mechanical ventilation. Initial ventilation settings should take into account the severity of lungs inhomogeneity (LI), but it is not assessed in everyday clinical practice. We present a new LI index that can be easily determined at the bedside. It is based on a comparison of resistive-elastic properties of lungs and defined as a ratio of time constants T1 T2_1 of gas flows in both lungs (T1 = R1∙C1, T2 = R2∙C2). We hypothesised that T1 T2_1 index increase causes a rise of lungs impedance (Z) and requires elevation of peak inspiratory pressure (PIP), mean airway pressure (MAP), and work of breathing (WOB). Infant hybrid (numerical-physical) respiratory simulator and a ventilator were used to simulate conventional ventilation of homogeneous and inhomogeneous lungs, and to measure PIP, MAP and WOB. A high correlation was found between Z, WOB, PIP, MAP and the T1T2_1 index (r = 0.9, P < 0.001). The increase of T1T2_1 index from 1 to 20 resulted in significant rise of WOB, PIP and MAP, e.g. at RR = 60 bpm, the WOB (1.05 → 1.49∙J_l), PIP (15.2 →20.5 cmH2O) and MAP (6.8 → 8.4 cmH2O), P < 0.005. It seems that T1T2_1 index could be used for prediction of PIP and MAP required to achieve effective ventilation in CDH infants; it also may affect the choice of ventilation strategy (CMV or HFV) as well as ventilator settings on CMV. We show how the relationships between WOB, PIP, MAP and the T1T2_1
EN
Virtual testing and hybrid simulation have become an important trend in airplane design and validation. The traditional Testing Pyramid (or Building Block) approaches that emphasis on uniaxial coupon test and full structure certification test are being challenged. Researchers are trying to use advanced testing and simulation methods to replace the Testing Pyramid approach. Before physical testing, virtual testing can be conducted to simulate the physical test. Virtual model of the full testing system including controller, actuators, and fixtures can be constructed and validated. In this work, an example has been developed and validated to show the potentials of the virtual testing process. Hybrid simulation is an approach of analyzing an analysis model and physical structure integrated system under realistic loading conditions. Hybrid simulation combines the lab testing with numerical analysis to explore the benefits of both methodologies. In this study, a hybrid simulation for a simplified airplane wing was conducted to demonstrate the process. Virtual testing and hybrid simulation are alternative methods of Testing Pyramid approach. Full scale tests are still required for certification but the more that is known about the test article, the greater chances of success in the full-scale certification testing.
EN
The substantiation of the necessity of increasing the completeness and reliability of processes modeling in electric power systems is given in this article. The synthesis of universal three-phase mathematical model of a power transformer (autotransformer), reproducing a significant spectrum of normal and abnormal processes in a transformer, taking into account the magnetization curve, is presented. The description of software and hardware simulation tools providing a methodically accurate solution of synthesized universal model in real time is described. The obtained simulation results confirm the adequacy of developed tools and the possibility of using in analysis and research of processes in electric power systems.
PL
Przedstawiono model matematyczny t– autotransformator, procesy zachodzące w transformatorze z uwzględnieniem krzywej magnesowania. Zaproponowano opragramowanie I bazę sprzętową do syntezy w czasie rzeczywistym.
5
EN
Purpose: of this paper: The aim of this paper is to present a simple hybrid simulation system, which is composed of virtual reality software and a mathematically oriented application. From the engineer’s point of view, an important possibility is to link together the mathematical software programs with these for creating presentation graphics or virtual reality, in order to create a simulation system with the large customisability. Design/methodology/approach: The coupling of mathematical and virtual reality system can be done in several different ways, using mechanisms for the Interprocess Communication. Findings: It has been assumed that EonX control will be used in a program conceptually similar to the EON Viewer, but equipped with support of basic interprocess communication interfaces in order to maximize flexibility and possibility of data exchange with different applications. Research limitations/implications: The one of specific requirements is to create an appropriate virtual world in EON Studio with use of external events nodes. Practical implications: The simple application named SockED has been created for testing purposes. The SockED application, which is hosting EonX control, acts as DDE server. As an external application any mathematical program that supports the DDE communication can be used (eg. Microsoft Excel, Matlab). There is also theoretical possibility of use the Programmable Logic Controller in similar manner like in case of SCADA application, but this case was not tested yet. Originality/value: There is no program on the market that allows complicated mathematical computation along with high resolution, 3D presentation graphics. The creation of SockED application allowed combining a mathematical program with the powerful graphics engine from EON Reality.
EN
A laboratory-model bismuth-fueled Hall thruster has been designed, and the geometry of that design has been incorporated into a 2-D radial-axial hybrid Hall thruster simulation. Velocity distribution data from the plume of that simulation, incorporated with calculations based on the known spectroscopy of the bismuth ion, have been used to simulate optical diagnostic measurements of the exhaust velocity of the thruster. Simulated Laser Induced Fluorescence ana emission spectroscopy data has been produced, assuming that the 14681.971 cm-1 transition of ionized bismuth is analyzed. The simulated Laser Induced Fluorescence assumes a narrow line-width, scanning laser probes the plasma either axially or radially, and it is suggested that the fluorescence be collected about the 15146.544 cm-1 transition; emission results have been simulated with varying instrument resolutions and with collection angles at 0° and 60° off the axial axis.
EN
A two-dimensional radial-axial hybrid simulation of the xenon-fueled Stanford Hall Thruster has been adapted to model a bismuth-fed thruster with varying channel geometry. The simulation treats the electrons as a quasi-one-dimensional fluid and the neutrals and ions as discrete superparticles advanced using a particle-in-cell (PIC) approach. Since experimental data of the electron cross-field mobility does not exist for the bismuth-fueled thruster, a model for electron transport based on shear suppression of plasma turbulence is used to compute a mobility from simulated plasma properties. While the bismuth propellant showed poor performance with an 8 cm channel length, results improved significantly as the simulated channel was shortened to 3.3 and 2.4 cm. The simulation of bismuth propellant at the shortest channel length provided significantly improved ionization fraction, thrust, efficiency, and thrust-to-power compared to xenon propellant on either the 8 cm or 2.4 cm channel, as can be expected due to the higher atomic mass and lower ionization potential of bismuth. With results indicating that optimal performance of the bismuth thruster occurs with a sub-3 cm channel length, such a design is suggested for a developing laboratory-model bismuth thruster.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.