Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hurst exponent
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Forecasting rainfall time series is of great significance for hydrologists and geoscientists. Thus, this study represents a contribution to understanding the impact of the fractal time series variety on forecasting model performance. Multiple fractal series were generated via p-model and used for modeling. Subsequently, the forecasting was delivered based on existing observed monthly rainfall data (three stations in the UK, from 1865 to 2002) through five forecasting models. Finally, the association between series fractality and models’ performance was examined. The results indicated that the forecasting based on the mono-fractal series resulted in the most reliable results (R2=1 and RMSE less than 0.02). In the case of multifractal series, modeling based on series with the right side of the asymmetric curve of the multifractal spectrum presented series with the lowest RMSE (0.96) and highest R2 (0.99) (desirable performance). In contrast, the forecasting based on series with the left side of the asymmetric curve of the multifractal spectrum suggested the most unreliable outcomes (R2 range [−0.0007 ~ 0.988] and RMSE range [0.8526 ~ 39.3]). The forecasting based on the symmetric curve of the multifractal spectrum series delivered regular performance. Accordingly, high and low errors are expected from forecasting based on the time series with a left-skewed multifractal spectrum and right-skewed multifractal spectrum (and mono-fractal time series), respectively. Hybrid models were the best options for forecasting mono-fractal and multifractal time series with right side asymmetric and symmetric multifractal spectrum curves. The ARIMA model was suitable to predict multifractal time series with left side asymmetric multifractal spectrum curves.
EN
Persistence expressed by hurst exponent (H) is estimated for streamflow of 122 stations in the basins of Peninsular India by three methods at different aggregation scales (daily, monthly mean, monthly and annual maximum). Mean H values indicated long term persistence (LTP) and the data of more than 70% stations showed LTP for other temporal resolutions. H displayed negative correlation with time series length, mean annual and specific mean discharges, while no significant correlation with catchment area. Positive dependence was found between persistence of streamflow and different climatic attributes (rainfall; maximum, mean and minimum temperature) for daily and annual maximum datasets.
EN
The most challenging in speech enhancement technique is tracking non-stationary noises for long speech segments and low Signal-to-Noise Ratio (SNR). Different speech enhancement techniques have been proposed but, those techniques were inaccurate in tracking highly non-stationary noises. As a result, Empirical Mode Decomposition and Hurst-based (EMDH) approach is proposed to enhance the signals corrupted by non-stationary acoustic noises. Hurst exponent statistics was adopted for identifying and selecting the set of Intrinsic Mode Functions (IMF) that are most affected by the noise components. Moreover, the speech signal was reconstructed by considering the least corrupted IMF. Though it increases SNR, the time and resource consumption were high. Also, it requires a significant improvement under nonstationary noise scenario. Hence, in this article, EMDH approach is enhanced by using Sliding Window (SW) technique. In this SWEMDH approach, the computation of EMD is performed based on the small and sliding window along with the time axis. The sliding window depends on the signal frequency band. The possible discontinuities in IMF between windows are prevented by the total number of modes and the number of sifting iterations that should be set a priori. For each module, the number of lifting iterations is determined by decomposition of many signal windows by standard algorithm and calculating the average number of sifting steps for each module. Based on this approach, the time complexity is reduced significantly with suitable quality of decomposition. Finally, the experimental results show the considerable improvements in speech enhancement under non-stationary noise environments.
4
Content available remote Evaluation of the training objectives with surface electromyography
EN
In this work, the multifractal analysis of the kinesiological surface electromyographic signal is proposed. The goal was to investigate the level of neuromuscular activation during complex movements on the laparoscopic trainer. The basic issue of this work concerns the changes observed in the signal obtained from the complete beginner in the field of using laparoscopic tools and the same person subjected to the series of training. To quantify the complexity of the kinesiological surface electromyography, the nonlinear analysis technique, namely, the multifractal detrended fluctuation analysis, was adopted. The analysis was based on the parameters describing the multifractal spectrum – the Hurst exponent – and the spectrum width. The statistically significant differences for a selected group of muscles at the different states (before and after training) are presented. In addition, as the base case, the relaxation state was considered and compared with the working states.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.