Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  human risk
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przewiduje się, że w najbliższych latach systemy piątej generacji (5G) będą szybko rozwijającą się i dominującą technologią sieci komórkowych. Nieuniknione jest przy tym zagęszczenie sieci stacji bazowych, aby sprostać oczekiwaniom w zakresie jakości usług. Pojawiają się obawy społeczne dotyczące nowych zakresów częstotliwości oraz wypadkowego poziomu promieniowania pola elektromagnetycznego, pochodzącego od wszystkich źródeł tego promieniowania łącznie. Jednocześnie trwają już prace nad systemami 6G, które jeszcze bardziej będą się różnić od obecnych systemów pod względem wykorzystywanych zakresów częstotliwości (w tym subterahercowych) oraz szybkozmiennych charakterystyk promieniowania anten mMIMO. Będzie je cechować również inne zarządzanie widmem częstotliwości i łączami radiowymi, nieprzypominające systemów 1G/2G/3G/4G/5G, np. terminale będą się komunikować jednocześnie z wieloma punktami nadawczo-odbiorczymi (Transmit/Receive Points – TRP). Prawdopodobnie przestanie być używany termin stacja bazowa i komórka – systemy 6G bywają określane jako bezkomórkowe (Cell-Free). Użycie pasm subterahercowych i ich własności propagacyjne będą implikowały konieczność stosowania inteligentnych powierzchni odbijających (Intelligent Reflecting Surface – IRS) zarówno na zewnątrz, jak i wewnątrz budynków. To znacznie zmieni scenariusze propagacyjne i wpłynie na analizę ekspozycji. W artykule przedstawiono niektóre techniczne uwarunkowania w systemach 5G i 6G, które mogą wpływać na ocenę ekspozycji na promieniowanie pola elektromagnetycznego. Ocena wpływu fal radiowych na organizmy żywe jest domeną medycyny i nie będzie tu bezpośrednio omawiana.
EN
Fifth-generation (5G) systems are expected to be a rapidly growing and dominant mobile network technology in the coming years. It is inevitable that the network of base stations will become denser to meet expectations in terms of quality of service. As a result, there are public concerns about the new frequency ranges and the total level of electromagnetic field radiation from all sources of this radiation combined. At the same time, work is already underway on 6G systems that will differ even more from current systems in terms of the frequency ranges used (including sub-Terahertz) and the rapidly varying radiation characteristics of mMIMO antennas. They will also feature a different management of frequency spectrum and radio links that will not resemble 1G/2G/3G/4G/5G systems, e.g. terminals will be able to communicate simultaneously with multiple Transmit/Receive Points (TRPs). It is likely that the terms "base station" and "cell" will no longer be used - 6G systems are sometimes referred to as Cell-Free. The use of sub-terahertz bands and their propagation properties will imply the need for Intelligent Reflecting Surfaces (IRS) both outdoors and indoors. This will significantly change propagation scenarios and affect exposure analysis. This article presents some of the technical considerations in 5G and 6G systems that may affect the assessment of exposure to electromagnetic field radiation. Assessment of the effects of radio waves on living organisms and is the domain of medicine and will not be directly discussed here.
EN
The objective of this study was to analyze the content of heavy metals and arsenic in soil and cereal grains as well as to evaluate the possible human risk in the central region of Peru. The soil samples of corn and barley grains were collected from seven agricultural zones and the concentrations of Cu, Fe, Pb, Zn and As were determined with the method of atomic absorption flame spectrophotometry. PERMANOVA showed that the effect of the type of crop and the sampling zone significantly influence the concentrations of heavy metals and As in soil and corn and barley grains (p < 0.05). PCA for heavy metals and As in soil and grain samples of the cereals studied showed that the first two main components represented 81.03% and 94.77% of the total variance, respectively. Hazard Quotient (HQ) for ingestion was the most significant. The HQ values of Pb and As in crop soils indicated that detrimental health effects are unlikely (HQ < 1). The soil hazard index (HI) values of both crops did not exceed the threshold value of 1 (HI < 1). The carcinogenic risk level (CR) of As from ingestion of corn and barley crop soils contaminated by As was higher in children than in farmers and adults. The bioconcentration factor (BCF) of As was higher in barley grains than in corn grains. The THQ of As exceeded the target value of 1 in 100% of the barley and corn sampling sites. The RC of As in grains exceeded the acceptable risk level of 10–6 in all sampling zones.
EN
Public crude oil fields in Wonocolo sub-district were active from 1942 until now and have inadequately operated. The aims of this research were to measure the level of total petroleum hydrocarbon (TPH) pollution and their distribution in soil and surface water at the Wonocolo public crude oil fields. Twelve composite soil samples were collected from uncontaminated and contaminated sites of old well (OW), transportation line (T), and refinery area (R) at the depths of 0–30 cm, 30–60 cm, and 60–90 cm. The composite surface water sample was obtained from two points with different distances from the river side. TPH from soil and surface water samples were extracted using soxhlet and gravimetric method. Quantification of TPH was performed using Fourier Transform Infrared (FT-IR) Spectrometer. From the results of this study, it was concluded that soils and surface water are contaminated by TPH of 119.80–107,190 µg/g and 211,025.73 µg/L, respectively. TPH is clearly located in the upper of 0–30 cm depth at OW, T, and R sites (52,328.14–107,189.63 µg/g). These concentrations exceeded the soil quality standard of TPH and classified as category A for human hazard risk. The findings from this study show that there are considerable health risks which are potentially poisonous to humans in the local area. We recommend that remediation could be conducted using biological methods to reduce TPH pollution level.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.