In a world in which biometric systems are used more and more often within our surroundings while the number of publications related to this topic grows, the issue of access to databases containing information that can be used by creators of such systems becomes important. These types of databases, compiled as a result of research conducted by leading centres, are made available to people who are interested in them. However, the potential combination of data from different centres may be problematic. The aim of the present work is the verification of whether the utilisation of the same research procedure in studies carried out on research groups having similar characteristics but at two different centres will result in databases that may be used to recognise a person based on Ground Reaction Forces (GRF). Studies conducted for the needs of this paper were performed at the Bialystok University of Technology (BUT) and Lublin University of Technology (LUT). In all, the study sample consisted of 366 people allowing the recording of 6,198 human gait cycles. Based on obtained GRF data, a set of features describing human gait was compiled which was then used to test a system’s ability to identify a person on its basis. The obtained percentage of correct identifications, 99.46% for BUT, 100% for LUT and 99.5% for a mixed set of data demonstrates a very high quality of features and algorithms utilised for classification. A more detailed analysis of erroneous classifications has shown that mistakes occur most often between people who were tested at the same laboratory. Completed statistical analysis of select attributes revealed that there are statistically significant differences between values attained at different laboratories.
The paper presents an analysis concerning the influence of selected psychophysical parameters on the quality of human gait recognition. The following factors have been taken into account: body height (BH), body weight (BW), the emotional condition of the respondent, the physical condition of the respondent, previous injuries or dysfunctions of the locomotive system. The study was based on data measuring the ground reaction forces (GRF) among 179 participants (3 315 gait cycles). Based on the classification, some kind of confusion matrix were established. On the basis of the data included in the matrix, it was concluded that the wrong classification was most affected by the similar weight of two confused people. It was also noted, that people of the same gender and similar BH were confused most often. On the other hand, previous body injuries and dysfunctions of the motor system were the factors facilitating the recognition of people. The results obtained will allow for the design of more accurate biometric systems in the future.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.