Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  human computer interaction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Simulation on human respiratory motion dynamics and platform construction
EN
Bronchoscopy has a crucial role in the current treatment of lung diseases, and it is typical of interventional medical instruments led by manual intervention. The scientific study of bronchoscopy is now of primary importance in eliminating problems associated with manual intervention by scientific means. However, for its intervention environment, the trachea is often treated statically, without considering the effect of tracheal deformation on bronchoscopic intervention during respiratory motion. Therefore its findings can deviate from practical application. Thus, studying kinetic problems in respiratory motion is of great importance. This paper developed a mathematical model of mechanical properties of respiratory motion to express respiratory force from the perspective of dynamics of respiratory motion. The dynamical model was solved using MATLAB. Then, a finite element model of respiratory motion was built using Mimics, and the results of respiratory force solution were used as the load of model for dynamics simulation in ABAQUS. Then, a human–computer interaction platform was designed in MATLAB APP Designer to realize parametric calculation and fitting of respiratory force, and a personalized human respiratory motion dynamics simulation was completed in conjunction with ABAQUS. Finally, experimental validation of the interactive platform was performed using pulmonary function test data from three patients. Validation analysis by respiration striving solution, kinetic simulation and experiment found that Dynamical model and simulation results can be better adapted to the individualized study of human respiratory motion dynamics.
2
PL
Jeszcze do niedawna komputery były urządzeniami przeznaczonymi dla procesów badawczych i militarnych, a dziś stanowią integralną część życia człowieka. Tak szybki rozwój technologii i nowych możliwości sprawia, że nauka, która zajmuje się relacjami człowieka z komputerem (HCI) ma pełno niezbadanych lub niewystarczająco przebadanych obszarów. Niniejszy artykuł na podstawie dostępnych metod badawczych HCI ma pokazać, że obecnie mocno spopularyzowana mysz komputerowa, która jest narzędziem umożliwiającym HCI, nie zawsze będzie najlepszym rozwiązaniem dla każdego użytkownika. Zestawienie myszy komputerowej z innymi dostępnymi na rynku kontrolerami i przebadanie ich w specjalnie przygotowanym środowisku testowym przez wybraną grupę badawczą, będzie najlepszym sposobem do rzetelnego stwierdzenia, że użycie myszy komputerowa nie zawsze może okazać się najlepszym wyborem.
EN
Until recently, computers were devices intended for research and military processes, and today they are an integral part of human life. Such a rapid development of technology and new possibilities means that the science that deals with human-computer relations (HCI) has a lot of unexplored or insufficiently studied areas. Based on the available HCI research methods, this article is to show that the currently highly popularized computer mouse, which is a tool that enables HCI, will not always be the best solution for every user. Comparing a computer mouse with other commercially available controllers and testing them in a specially prepared test environment by a selected research group will be the best way to reliably state that the use of a computer mouse may not always be the best choice.
3
Content available Cooling fan controlled by embedded vision system
EN
The HMI (human machine interaction) systems are widely used to control machines and variety of devices. Currently the HMI solutions, based on touch screens are almost commonly used in many domains, however the number of devices, which interaction with the user is based on speech recognition or user gesture recognition increases systematically. The paper focuses on the electromechanical system, which applies gestures and handwritten digits to control the speed of the DC cooling fan. The system crucial elements are the AVR microcontroller and the developer board, equipped with the embedded supercomputer NVIDIA Jetson TX1. To create the software part of the system artificial intelligence algorithms and deep neural networks were applied. The paper describes the complete routine of data preprocessing, deep neural network training and testing with the use of the GPU Tesla K20 and with the use of the DIGITS (Deep Learning GPU Training System), deployment of the trained model on Jetson TX1 board and the system execution. The system enables to control the fan through the two gestures (“stone”, ”paper”) or through four handwritten digits.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.