Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hot press
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Biodegradable advanced polymer composites have recently received a large amount of attention. The present study aimed to design poly(lactic acid) multiwalled carbon nanotube nanocomposites (PLA/MWCNTs) using a simple fabrication technique. A PLA sheet was first dissolved in dichloromethane, and MWCNTs were subsequently added at various concentrations (0.5, 1.5 and 5%) while applying shear strain stirring to achieve dispersion of carbon nanotubes (CNTs). These solutions were then molded and a hot press was used to generate sheets free of voids with entrapped solvent. The prepared samples were characterized using field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Our data showed composite samples free of defects and voids, indicating that the hot press is capable of generating sufficiently compact polymer matrices. Additionally, TGA and FTIR showed significant bonding interactions between the PLA matrix and the nano-fillers. Collectively, our results suggest that incorporation of CNTs as nano-fillers into biodegradable polymers may have multiple applications in many different sectors.
EN
Ceramic matrix composite (CMC) material systems are receiving a great interest to be used and provides unique properties for aircraft and land-based turbine engines, defence applications, rocket motors, aerospace hot structures and industrial applications. Boron carbide (B4C)-silicon carbide (SiC) ceramic composites are very promising armor materials because they are intrinsically very hard. Advanced SiC-based armor is desired such that the projectile is completely defetaed without penetrating the ceramic armor. The effect of B4C addition on microstructural and thermal properties of the SiC-B4C powder composites were investigated after high energy milling and hot pressing. SiC powders containing 5wt%, 10wt%, 15wt% B4C were mechanically alloyed in a high energy ball mill for 8 h. Microstructural characterization investigations (SEM, XRD) were carried out on mechanically alloyed SiC powder composites containing 5 wt%, 10 wt%, 15 wt% B4C powders and on these powder composites sintered in vacuum at 50 MPa at 2100 degree C. The thermal properties were characterized using DTA, TGA and dilatometer. The results were evaluated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.