Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hot plate welding
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper discusses the topic of butt welding of polyurethane drive belts by the hot plate method in the context of modeling the process of this technological operation. Based on the analysis of the butt welding process, a series of studies of the thermomechanical properties of the material from which the belt is made has been planned. The results will be used for mathematical modeling of the welding process, and in particular its most important phase: the plasticizing operation. On this basis, the study of the compression of cylindrical specimens taken from the belt has been performed at two different speeds. Their result is the relationship between the compressive stress σc and the modulus of longitudinal elasticity Ec at compression and: deformation εc, temperature value T, as well as the compressive velocity vc. In the next step, dynamic viscosity η of the belt material was determined based on the results of dynamic thermomechanical analysis. The research work culminated in the attempts to plasticize the material on a hot plate, in conditions similar to the process of industrial welding. These studies were performed at different speeds vpl, resulting in the correlation between the force required for plasticizing Fpl and the value of the speed of the belt end vpl relative to the hot plate heated to a temperature Tp. The obtained results will be used to formulate a mathematical model of plasticizing the material, based on the selected mechanical deformation models.
EN
Most industrial machines use belt transmission for power transfer. These mechanisms often use the round belts of several milli-metres in diameter that are made of thermoplastic elastomers, especially polyurethane. Their production process calls for bonding the ma-terial, which is often performed by hot plate butt welding. In order to achieve proper design of an automatic welding machine, the authors analysed the hot plate welding process of round belts. This process consists of five phases. It is necessary to recognize all the physical phenomena that occur during welding, especially those connected with thermomechanical properties of material. This knowledge is neces-sary to determine the temperature distribution during each step of the process. The paper presents a standard welding cycle together with an explanation of the physical phenomena in each phase. An analysis of these fundamentals will be used to derivate the function of tem-perature distribution during all process phases. In addition, some assumptions for calculation of temperature distribution and some funda-mental physic correlations were presented.
EN
Most of the industrial machines use round-shaped drive belts for power transfer. They are often a few millimetres in diameter, and made of thermoplastic elastomer, especially polyurethane. Their production process requires the bonding step, which is often performed by butt welding, using the hot plate method. The authors have undertaken to design an automatic welding machine for this purpose. Consequently, it is required to carry out a process analysis of hot plate welding, which entails describing the dependency between technological parameters (temperature, pressure force, time) and the quality of the joint, especially the outer surface of the belt around the weld. To analyse this process in a proper way, it is necessary to describe the physical phenomena that occur in the material, during particular operations of the hot plate welding process. One of the most troublesome phenomena occurring during the welding process is removing of the flash. These round rings, placed around the weld, which remains after the joining process, are unacceptable in the finished component. The authors took an effort to design the necessary equipment for removing of the flash after welding, using some simple parts that cut off excessive material. The paper shows the three possible solutions for flash removal. They were verified experimentally, and afterwards, the best solution was chosen. Additionally, a number of analytical calculations were carried out in order to determine the maximum force value required for this operation. Results of the analytical calculations were compared with experimental results.
PL
W artykule dokonano teoretycznej analizy procesu technologicznego zgrzewania doczołowego metodą gorącej płyty pasów cięgnowych o przekroju kołowym, wykonanych z elastomerów termoplastycznych, a w szczególności poliuretanu i poliestrów. Zwrócono uwagę na możliwość modyfikacji i wpływ parametrów poszczególnych operacji technologicznych na przebieg procesu zgrzewania. Dokonane rozważania będą wykorzystane w kolejnych etapach badań nad zgrzewaniem tą metodą. Rezultaty analizy teoretycznej i badań empirycznych posłużą do opracowania dokładnych założeń projektowych podczas konstruowania urządzenia do zautomatyzowanego zgrzewania pasów cięgnowych.
EN
In this paper it was showed the analysis of hot plate welding process, used for round drive belts, made from thermoplastic elastomers, especially polyurethane and polyester. It was noticed possibility of technological process parameters modification, and their influence for welding process. This consideration will be used in further research about hot plate welding. The results of theoretical and experimental research will be applied in formulating of project assumptions, during automatic welder construction process.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.