Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  horizontal tube
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The heat transfer coefficient during the pool boiling on the outside of a horizontal tube can be predicted by correlations. Our choice was based on ten correlations known from the literature. The experimental data were recovered from the recent work, for different fluids used. An evaluation was made of agreement between each of the correlations and the experimental data. The results of the present study firstly showed a good reliability for the correlations of untsov [10], Stephan and Abdeslam [11] with deviations of 20% and 27%, respectively. Also, the results revealed acceptable agreements for the correlations of Kruzhlin [6], Mc Nelly [7] and Touhami [15] with deviations of 26%, 29% and 29% respectively. The remaining correlations showed very high deviations from the experimental data. Finally, improvements have been made in the correlations of Shekriladze [12] and Mostinski [9], and a new correlation was proposed giving convincing results.
EN
Boiling produces vapor with a phase change by absorbing a consistent amount of heat. Experimentation and modeling can help us better understand this phenomenon. The present study is focused on the heat transfer during the nucleate pool boiling of refrigerant R141b on the surface of a horizontal copper tube. The results of the experiment were compared with four correlations drawn from the literature, and the critical heat flux was examined for different pressures and also compared with the predicted values. Simulating boiling with two-phase models allowed us to infer the plot of the temperature distribution around the tube and compared it to results from other work.
3
EN
The effect of eddy diffusivity upon the turbulent film condensation of saturated vapour flowing downward onto a horizontal isothermal circular tube is performed theoretically by employing the Hilpert semi-empirical model. The interfacial shear of the vapour from laminar flow to turbulent flow is evaluated with help of potential flow theory. The transition region or the separation point of condensate film is also studied for the following different dominant parameters including Prandtl number, Reynolds number, sub-cooling parameters and system pressure parameter. The condensate film flow and the heat transfer characteristics under the effects of eddy diffusivity and the above mentioned parameters are investigated. The present result shows in better agreement with the experimental data than the previous theoretical modes do.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.