Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  high-speed video
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
ANFO is a well-known, reliable and safe commercial explosive. It has been around since the late 1950’s and its detonation properties are well characterized. In this study, the detonation process of dry, wet and aluminised ANFO, was recorded using two high-speed cameras with recording rates of 1,200 fps and 50,000 fps. The 1,200-fps footage allowed the observation of the post blast fumes (i.e. NOx) produced by ANFOs with different water contents. The 50,000-fps footage allowed the observation of the detonation area, gas expansion phase and the measurement of the velocity of detonation (VOD). The video footage also recorded a bright zone in front of the gases (longer than 50 mm). We assumed that a reaction is taking place in this zone, but it is difficult to be sure if this is the reaction zone or not as it is longer than previously reported reaction zone lengths. Analysis showed that ANFO detonates effectively for water contents of up to 9 wt.%, and more importantly, there is little variation in the VOD. As far as the expansion of gases is concerned, the ANFO-Al expansion rate appears to be different. In this mixture, the absence of NOx fumes could have been due to the expected higher temperatures produced by the burning of the aluminium additive as observed in the images recorded with the high-speed camera.
2
Content available remote Kinematic model for yarn movement in turbulent air flows
EN
In the textile industry a tool is needed that can predict fibre and yarn movement in turbulent air streams. The Institut für Textiltechnik of RWTH Aachen University (ITA) has developed a yarn model that can be used to study the movement of single fibres and yarns in turbulent air flows. The kinematic model is described in this article. Special attention is paid to the aerodynamic forces that determine the flight path of fibres and yarns. The coefficient of drag tangential to the fibre axis ct was studied thoroughly using computational fluid dynamics (CFD). It is shown that the diameter has a strong influence on the wall shear stress. Neglecting this effect for thin fibres can lead to errors in the coefficient of drag of a factor of 500. The turbulence intensity also has an important influence on the boundary layer development, which also determines the coefficient of drag. The assumptions made for the yarn model were tested in an experiment in which yarn flight paths were detected with a high-speed video camera. The comparison to the simulation results confirms the usability of the yarn model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.