Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  high-speed counter-current chromatography
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Seven compounds, including two flavanones, dihydrokaempferol (1) and naringenin (2), and five terpenoids, boscartol A (3), 3,7-dioxo-tirucalla-8,24-dien-21-oic acid (4), 3α-acetoxyl-7-oxo-tirucalla-8,24-dien-21-oic acid (5), 11-keto-β-boswellic acid (6), and acetyl-11-keto-boswellic acid (7), have been purified by high-speed counter-current chromatography (HSCCC) from olibanum. For the separation, from 250 mg of the crude extract, 3.1 mg of 1 (95.2% purity), 2.7 mg of 2 (96.1% purity), 9.1 mg of 3 (96.7% purity), 4.5 mg of 4 (95.3% purity), 5.4 mg of 5 (96.3% purity), 48.1 mg of 6 (96.8% purity), and 45.5 mg of 7 (98.1% purity) were obtained by HSCCC with petroleum ether–ethyl acetate–methanol–water (1:0.8:1.1:0.6, v/v). The structures of these seven compounds were elucidated by a combination of electrospray ionization mass spectrometry (ESI–MS) and extensive nuclear magnetic resonance (NMR) spectroscopic.
EN
Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg -1 pollen for LA and 1.75 g kg -1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.
EN
A study on separation of betalain mixture obtained from red beet juice (Beta vulgaris L.) by analytical high-speed counter-current chromatography (HSCCC) was performed. The extract was obtained by thermal treatment of acidified red beet juice for 30 min in 85 °C. The pigment mixture consisted of betanin/isobetanin as well as their decarboxy- and dehydro-derivatives. The HSCCC process was accomplished in the ‘tail to head’ mode with two polar solvent systems containing salt: BuOH-EtOH-NaClsolution-H2OH3PO4 (1300:700-1000:1300:700:2.5-5.5 (system I), 1300:200-400:1300:700:2.5-4.5 (system II); v/v/v/v/v). The retention of the stationary phase was 73% (system I) and 79% (system II). The mobile phase was pumped at 2 ml/min flow rate. HPLC-DAD-ESI-MS analyses were performed in reversed phase mode for the obtained HSCCC fractions and crude extract. The solvent systems enabled separation of betanin and decarboxy-betanins (system I and II) as well as neobetanin (system II). Additionally, some pure fractions of 17-decarboxy-betanin and 2,17-bidecarboxy-betanin were obtained in system II.
EN
In this study, new two-phase solvent systems for counter-current chromatography (CCC) consisting of n-butanol and water as well as various amounts of acetic acid, acetonitrile, ethanol, acetone or ethyl acetate were tested. Additionally, tetra-n-butylammonium bromide (TBAB) was introduced into the system in the form of aqueous solutions or phosphate-citrate buffer (pH 6.7) in order to form ion-pairs with betalains. The selection of buffer pH was based on their ability to create ion pairs by tetraalkylammonium salts, with selected betalains under these conditions. In this study, it is shown that the settling time of two phases is longer with the increase of acetic acid/acetonitrile/ethanol/acetone/ethyl acetate. For selected solvent systems with high amounts of acetonitrile, ethanol and acetone two phases were not observed. The systems with acetone have the largest increase of settling time. Ethyl acetate systems were characterized by a slow settling time increase. In systems containing additionally 2% aqueous TBAB, smaller changes in settling time than in similar systems without TBAB were observed. Addition of TBAB in the buffer resulted in a prolongation of settling time. Solvent systems in which the separation between the aqueous and organic phases was visually best, were selected from among all the tested systems and the betalain partition coefficients were measured by LC-DAD-ESI-MS. The best results were observed for systems: n-butanol-water-acetic acid (2:2.5:0.75, v/v/v), n-butanol-water-acetic acid (2:2.5:1, v/v/v) and n-butanol-TBAB in water-acetonitrile (2:2.5:0.5, v/v/v).
EN
Supercritical fluid extraction (SFE) was used to extract shionone from Aster tataricus L. f. The effect of various parameters, i.e., temperature, pressure and sample particle size on yield was investigated with an analytical-scale SFE system to find the optimal conditions. The process was then scaled up by 50 times with a preparative SFE system under the optimized conditions of temperature 40 °C, pressure 30 MPa, and a sample particle size of 40–60 mesh. Then preparative high-speed counter-current chromatography was successfully used for isolation and purification of shionone from the SFE extract with a two-phase solvent system composed of n-hexane-methanol (2:1, volume ratio). The separation produced a total of 75 mg of shionone from 500 mg of the crude extract in one step separation with the purity of 98.7%, respectively, as determined by high-performance liquid chromatography (HPLC) and 92% recovery. The structure of shionone was identified by electrospray ionization-mass spectrometry (ESI-MS), hydrogen-1 nuclear magnetic resonance (1H-NMR), and carbon-13 nuclear magnetic resonance (13C-NMR).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.