Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  high-frequency oscillation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, the high frequency oscillation (HFO) accidents caused by long link delay in modular multilevel converter-based high-voltage direct current (MMC-HVDC) transmission projects have posed new challenges to the safety and stability of power system operation. This paper adopts delay stability margin to measure the high frequency stability of the MMC-HVDC system and derives the state space model of the MMC-HVDC time-delay system considering the link delay. The Lyapunov direct method is extended to the stability analysis of the MMC-HVDC time-delay system and the delay stability margin of the system is solved based on the linear matrix inequality (LMI). Then the influence of the controller parameters on the delay stability margin of the MMC-HVDC system is analyzed. Based on improved Smith predictive compensation control, an HFO suppression strategy of the MMC-HVDC system is proposed to improve the high frequency stability of the system by equivalently reducing and eliminating the total link delay. The effectiveness of the Lyapunov direct method for solving the delay stability margin of the MMC-HVDC system and the superiority of the proposed HFO suppression strategy are verified by the time-domain simulation in PSCAD/EMTDC. The research provides a novel viewpoint for the study of the HFO and suppression strategy of the MMC-HVDC system.
EN
High-frequency resonance is a prominent phenomenon which affects the normal operation of the high-speed railway in China. Aiming at this problem, the resonance mechanism is analyzed first. Then, model predictive control and selective harmonic elimination pulse-width modulation (MPC-SHEPWM) combined control strategy is proposed, where the harmonics which cause the resonance can be eliminated at the harmonic source. Besides, the MPC is combined to make the current track the reference in transients. The proposed control has the ability to suppress the resonance while has a faster dynamic performance comparing with SHEPWM. Finally, the proposed MPC-SHEPWM is tested in a simulation model of CRH5 (Chinese Railway High-speed), EMUs (electric multiple units) and a traction power supply coupled system, which shows that the proposed MPC-SHEPWM approach can achieve the resonance suppression and shows a better dynamic performance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.