Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  high density specific impulse
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
n the present study, a high performance composite solid propellant formulation was prepared based on nitrile butadiene rubber (NBR) and dibutyl phthalate (DBP) plasticizer, which has a longer pot life and high density specific impulse. The developed cost effective novel binder system was prepared with readily available raw materials (NBR and DBP). The formulation of the composition was performed by varying the content of the NBR/DBP binder in the range of 14-20%. The rocket performance characteristics were determined theoretically using PROPEP and compared with those of an HTPB based propellant. The rheological, mechanical, physical, ballistic and thermal properties of the NBR/DBP propellant were studied and compared with literature data for similar compositions based on an HTPB/dioctyl adipate (DOA) binder. The yield stress was determined by spreadibilty measurements, and indicated the superiority of this binder based propellant over existing composite propellants. It was concluded that following decreasing the content of the NBR/DBP binder in the propellant from 20 to 14%: in the range 58.83-78.45 bar (5.883-7.845 MPa), the pressure index increased from 0.159 to 0.371, – at 68.64 bar (6.864 MPa), the burning rate increased from 4.10 to 6.54 mm/s, but the theoretical specific impulse value did not change significantly (258.0259.8 s), – the tensile strength and E-modulus increased from 6.03 to 9.88 (0.591-0.969) to and from 18.00 to 75.00 kgf/cm2 (1.765 to 7.355 MPa), respectively. Moreover, a DSC and TGA study indicated a lower decomposition temperature for the NBR/DBP propellant compared to the HTPB propellant. The NBR/DBP propellant exhibited a pot life more than double that of a conventional HTPB/ DOA based propellant.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.