Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  high density and low density polyethylene
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The attractiveness of synthetic polymers for cell colonization can be affected by physical and chemical modification of the polymer surface. In this study, high density polyethylene (HDPE, m.w. 0.952g/cm3) and low density polyethylene (LDPE, m.w. 0.922g/cm3) were modified by an Ar plasma discharge using Balzers SCD 050 device (exposure time 10, 50, 150 and 400 seconds, discharge power 1.7W). The material was then seeded with rat aortic smooth muscle cells (RASMC; passages 8 to 9, 17 000 cells/cm3) and incubated in a DMEM medium with 10% of fetal calf serum. On day 1 after seeding, the number of initially adhered cells was significantly higher on all modified HDPE and LDPE samples. On day 2, this difference persisted in HDPE, whereas in LDPE only the values on the samples modified by 150 and 400 seconds were significantly higher. On the 5th and 7th day, there were no significant differences in cell number among all LDPE samples. However, on the HDPE foils, significant differences were still apparent on the samples modified for 400 seconds. The cell spreading areas measured on day 1 after seeding were significantly larger on all modified LDPE samples, and, on day 2, on the HDPE samples exposed for 150s. The increased cell colonization was probably due to the formation of oxygen-containing chemical functional groups in the polymer. These results suggest that the responsiveness of the cell to the changes in physiochemical surface properties was more pronounced in HDPE than in LDPE. On both types of polyethylene, the most appropriate exposure time for the enhancement of cell adhesion and growth seemed to be 150 and 400 seconds.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.