Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hierarchical classification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring. Method: This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales. Results: The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring.
EN
Brain hemorrhage is the first cause of death in ages between 15 and 24, and the third after heart diseases and cancers in other ages. Saving the lives of such patients completely depends on detecting the correct location and type of the hemorrhage in an early stage. In this paper, an automatic brain hemorrhage detection and classification algorithm on CT images is proposed. To achieve this purpose, after preprocessing, a modified version of Distance Regularized Level Set Evolution (MDRLSE) is used to detect and separate the hemorrhage regions. Then a perfect set of shape and texture features from each detected hemorrhage region are extracted. Moreover, we define a synthetic feature that is called weighted grayscale histogram feature. In this feature, valuable information from shape, position and area of the hemorrhage are integrated with the grayscale histogram of hemorrhage region. After that a synthetic feature selection algorithm is applied to select the most convenient features. Eventually, the seg- mented regions are classified into four types of the hemorrhages such as EDH, ICH, SDH and IVH by a hierarchical structure of classification. Our proposed algorithm is evaluated on a perfect set of CT-scan images and obtains the accuracy rate of 96.15%, 95.96% and 94.87% for the segmentation of the EDH, ICH, and SDH types, respectively. Also our proposed classification structure provides the accuracy rate of 92.46% and 94.13% for the first and second classifiers of the hierarchical classification structure for classifying the IVH from normal class and the EDH, ICH and SDH hemorrhage classes, respectively.
3
Content available remote Modelling Progressive Filtering
EN
Progressive filtering is a simple way to perform hierarchical classification, inspired by the behavior that most humans put into practice while attempting to categorize an item according to an underlying taxonomy. Each node of the taxonomy being associated with a different category, one may visualize the categorization process by looking at the item going downwards through all the nodes that accept it as belonging to the corresponding category. This paper is aimed at modeling the progressive filtering technique from a probabilistic perspective. As a result, the designer of a system based on progressive filtering should be facilitated in the task of devising, training, and testing it.
EN
This work is focused on the automatic recognition of environmental noise sources that affect humans’ health and quality of life, namely industrial, aircraft, railway and road traffic. However, the recognition of the latter, which have the largest influence on citizens’ daily lives, is still an open issue. Therefore, although considering all the aforementioned noise sources, this paper especially focuses on improving the recognition of road noise events by taking advantage of the perceived noise differences along the road vehicle pass-by (which may be divided into different phases: approaching, passing and receding). To that effect, a hierarchical classification scheme that considers these phases independently has been implemented. The proposed classification scheme yields an averaged classification accuracy of 92.5%, which is, in absolute terms, 3% higher than the baseline (a traditional flat classification scheme without hierarchical structure). In particular, it outperforms the baseline in the classification of light and heavy vehicles, yielding a classification accuracy 7% and 4% higher, respectively. Finally, listening tests are performed to compare the system performance with human recognition ability. The results reveal that, although an expert human listener can achieve higher recognition accuracy than the proposed system, the latter outperforms the non-trained listener in 10% in average.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.