Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  helical pipe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main aim of this research was to determine in three ways, i.e. experimentally, analytically and by means of numerical modelling, the resistances of the flow of a natural liquid in a helical pipe and in curved pipes. The analyses were carried out for three pipes: one helical pipe and two curved pipes. Each of the pipes was 2 m long and its inside diameter was 4 mm. The experiment was carried out on a test stand making it possible to measure the rate of the flow of the liquid, the temperature at the pipe’s inlet and outlet and the pressure at the pipe’s inlet and outlet. The resistances of the flow of the liquid were calculated from analytical or empirical formulas found in the literature on the subject. Moreover, numerical modelling was performed using the finite volume element method.
PL
W artykule przedstawiono metodę obliczeń wymiany ciepła oraz strat ciśnienia w pionowej helikoidalnie skręconej rurze (wężownicy) zanurzonej w dużym zbiorniku z chłodną cieczą. Wymiana ciepła na zewnątrz wężownicy odbywa się w warunkach konwekcji swobodnej. W pierwszej części artykułu podano komplet równań oraz opisano algorytm metody. W części drugiej przedstawiono wyniki obliczeń uzyskane za pomocą programu komputerowego, w którym zastosowano zaproponowany algorytm. W obliczeniach zbadano wpływ czterech parametrów, a mianowicie: średnicy rury d, m, średnicy wężownicy D, m, skoku zwoju p, m i strumienia płynu m, kg/s, przepływającego w wężownicy na pięć następujących wielkości: współczynnik przejmowania ciepła wewnątrz wężownicy hm, W/(m2*lC), współczynnik przejmowania ciepła na zewnątrz wężownicy h, W/(m2*K), współczynnik przenikania ciepła przez ściankę wężownicy U, W/(m*K.), długość wężownicy L, m oraz zapotrzebowanie na moc elektryczną P, W, niezbędną do przetłoczenia cieczy przez wężownicę. Obliczenia sprawdzające wykazały poprawność działania programu. Zaproponowana metoda może być stosowana do projektowania wężownic oraz ich optymalizacji.
EN
In this paper a method of heat and fluid flow calculations of vertical helical pipe immersed in cold liquid of constant temperature is suggested. Free convection at the outer surface of the pipe was assumed. In the first part of the paper all equations and a flowchart of the method are discussed. In the second part results of calculations are presented and analyzed. The calculations were performed by means of computer program in which the method was implemented. Effects of four independent variables on five dependent parameters were investigated. As independent variables were selected: tube diameter d [m], diameter of helical pipe D [mj, pitch of the helical coil p [m] and fluid flow inside the pipe m [kg/s]. The dependent parameters were: heat transfer coefficient at inner surface of the pipe h [W/(m2*K)], heat transfer coefficient at outer surface of the pipe h [W/(m*2K)], overall heat transfer coefficient U [W/(m*K)], pipe length L [m] and electrical power of the pump P [W]. It was shown that the program operated correctly and it could be used for design and optimize helical pipes.
PL
W artykule przedstawiono metodę obliczeń wymiany ciepła oraz strat ciśnienia w pionowej helikoidalnie skręconej rurze (wężownicy) zanurzonej w dużym zbiorniku z chłodną cieczą. Wymiana ciepła na zewnątrz wężownicy odbywa się w warunkach konwekcji swobodnej. W pierwszej części artykułu podano komplet równań oraz opisano algorytm metody. W części drugiej przedstawiono wyniki obliczeń uzyskane za pomocą programu komputerowego, w którym zastosowano zaproponowany algorytm. W obliczeniach zbadano wpływ czterech parametrów, a mianowicie: średnicy rury d, m, średnicy wężownicy D a, m, skoku zwoju p, m i strumienia płynu m, kg/s, przepływającego w wężownicy na pięć następujących wielkości: współczynnik przejmowania ciepła wewnątrz wężownicy h in, W/(m2*K), współczynnik przejmowania ciepła na zewnątrz wężownicy h out, W/(m2*K), współczynnik przenikania ciepła przez ściankę wężownicy U, W/(m*K), długość wężownicy L, m oraz zapotrzebowanie na moc elektryczną P, W, niezbędną do przetłoczenia cieczy przez wężownicę. Obliczenia sprawdzające wykazały poprawność działania programu. Zaproponowana metoda może być stosowana do projektowania wężownic oraz ich optymalizacji.
EN
In this paper a method of heat and fluid flow calculations of vertical helical pipe immersed in cold liquid of constant temperature is suggested. Free convection at the outer surface of the pipe was assumed. In the first part of the paper all equations and a flowchart of the method are discussed. \n the second part results of calculations are presented and analyzed. The calculations were performed by means of computer program in which the method was implemented. Effects of four independent variables on five dependent parameters were investigated. As independent variables were selected: lube diameter d [m], diameter of helical pipe D a [m], pitch of the helical coil p [m] and fluid flow inside the pipe m [kg/s]. The dependent parameters were: heat transfer coefficient at inner surface of the pipe h in [W/(m2K)], heat transfer coefficient at outer surface of the pipe h out [W/(m2*K)], overall heat transfer coefficient U [W/(m*K)j, pipe length L [m] and electrical power of the pump P [W]. It was shown that the program operated correctly and it could be used for design and optimize helical pipes.
4
Content available remote Investigation of a laminar flow of a non-Netonian fluid in a helical pipe
EN
This paper presents a numerical study of a fully developed laminar flow of a non-Newtonian fluid in a helical pipe. An orthogonal helical coordinate system is utilized and the Navier-Stokes equations for the non-Newtonian fluid in this coordinate system are derived. The SIMPLE algorithm with a staggered grid is adopted to solve the governing equations. The effects of the pressure gradient, the curvature, and the torsion on the fully developed laminar flow in helical pipes are investigated. The comparison of flow dynamics between Newtonian and non-Newtonian fluids is presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.