Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  heavy rainfall
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
PL
Modelowanie intensywnych opadów deszczu o zadanej wysokości oraz prawdopodobieństwie wystąpienia jest jednym z największych wyzwań hydrologii miejskiej, a w szczególności bezpiecznego odwadniania terenów, przede wszystkim z uwagi na losowy charakter występowania opadów atmosferycznych jako elementów meteorologicznych. Dostęp do danych meteorologicznych w Polsce przez wiele lat był istotną przeszkodą w procesie aktualizacji wiedzy i narzędzi służących w projektowaniu systemów racjonalnego gospodarowania wodami opadowymi i roztopowymi. W niniejszej pracy przedstawiono procedurę opracowania prostego modelu opadowego, umożliwiającego wyznaczenie charakterystyk projektowych intensywnych opadów deszczu, przy minimalnym dostępie do danych pomiarowych. Metodę przedstawiono na podstawie otwartych danych meteorologicznych Instytutu Meteorologii i Gospodarki Wodnej - Państwowego Instytutu Badawczego, z lat 1986-2015, na przykładzie Szczecina. Zaprezentowana metoda ma charakter uniwersalny, skalowalny dla dowolnej miejscowości, a jej wyniki zostały porównane z dostępnymi dotychczas rozwiązaniami i metodami takimi jak model Błaszczyka, model IMGW (Bogdanowicz-Stachy), atlas PANDa czy dostępne dla Szczecina wyniki niemieckiego modelu DWD KOSTRA. W wyniku analizy porównawczej zauważono, ze opracowane modele fizykalne dają najlepsze spośród badanych rozwiązań wyniki, dla opadów występujących najczęściej C = 1 oraz C = 2 lata. Dla pozostałych częstości C = 5, C = 10 i C = 30 lat, opracowane autorską metodą modele dały się wyprzedzić wynikom jedynie modelom probabilistycznym atlasu PANDa.
EN
Modeling intense rainfall of a given height and probability of occurrence is one of the greatest challenges of urban hydrology, and in particular safe drainage of areas, primarily due to the random nature of precipitation as meteorological elements. Access to meteorological data in Poland for many years was a significant obstacle in the process of updating knowledge and tools used in the design of systems for rational rainwater and snowmelt management. This paper presents a procedure for developing a simple precipitation model that enables the determination of the design characteristics of heavy rainfall with minimal access to measurement data. The method was presented on the basis of open meteorological data of the Institute of Meteorology and Water Management - National Research Institute, from the years 1986-2015, on the example of Szczecin. The presented method is universal and scalable for any locality, and its results have been compared with the solutions and methods available so far, such as the Błaszczyk model, the IMGW (Bogdanowicz-Stachy) model, the PANDa atlas or the results of the German DWD KOSTRA model available for Szczecin. As a result of the comparative analysis, it was noticed that the developed physical models give the best results among the tested solutions, for precipitation occurring most often at C = 1 and C = 2 years. For the remaining frequencies of C = 5, C = 10, and C = 30 years, the models developed using the original method could be outpaced only by the probabilistic models of the PANDa atlas.
2
Content available remote Assessment of the WRF model in simulating a catastrophic flash flood
EN
The present study examines the ability of the forecast (WRF) model to reproduce a heavy rainfall flash-flood event that hit the urban area of Skopje City, on August 6, 2016. A series of numerical experiments were carried out to evaluate the model’s performance in the simulation of this catastrophic event, which caused great material damage and the loss of 23 human lives. The simulations with the triple-nested WRF-ARW runs as well as the experiment using WRF-NMM dynamic core with the initial data of FNL GDAS showed better skills in a more precise qualitative and quantitative assessment of the total 24-h accumulated precipitation, the location and the relative intensities of rainfall. Explicit treatment of convection without parameterization significantly improves forecast accuracy and reduces forecast errors. The verification results, using standard tests, showed the model’s ability to reproduce the occurred flood. The correlation coefficient is higher for runs with explicit cumulus convection and 4 km resolution with the Yonsei PBL scheme and Thomson microphysics with aerosol climatology. In addition to the influence of the thermodynamic characteristics of the atmosphere, orographic forcing on the development of a strong mesosystem is of great importance for the intensification of convective cells and the production of large amounts of precipitation.
EN
The aim of this research was to determine the influences of meteorological and hydrogeological factors on the water level of a rainwater storage and infiltration reservoir. The examined reservoir is located in the urban and industrial area of Krakow, on ground owned by the Polish State Railways (PKP), Kraków-Bieżanów branch. We analyzed a range of climatic (precipitation and evaporation) and hydrological factors (water stage in the reservoir and groundwater level) and their inter-relationships to determine their influences on the water depth regime in the storage and infiltration reservoir. Based on our results, the increase in the water table level in the reservoir is connected with the increase in the groundwater level and it is observed in the spring and summer periods, when meltwater and stormwater enter the reservoir. At the end of July, the groundwater table level increases because of excessive rainfall events. Throughout the entire experimental period, the reservoir was fed by infiltering groundwater from the upper parts of the basin. The water depth averages in the reservoir were closely correlated with the average groundwater table levels, the sum of precipitation from the week prior to the date of the examination of water depth in the reservoir, and the sum of potential evaporation in the given week.
EN
High magnitude flash flood has occurred several times in some areas in Central Sulawesi Province after the 2018 Palu Earthquake, one of them is in the Bangga River, Sigi Regency, Indonesia. It has caused massive impacts such as damaging agricultural and plantation areas and submerging public facilities and infrastructure and even causing fatalities. The flood carries a variety of materials, especially high concentration sediments which are thought to originate from eroded soils due to landslides induced by a 7.5 magnitude earthquake. These materials are eroded and transported by the flow at the upstream watershed due to heavy rainfall. This study intends to investigate the potential of landslides, factors that trigger floods and increased flooding after the earthquake. This research was conducted by investigating the landslides potency based on field surveys and interpretation of the latest satellite imagery, analyzing the characteristics of rainfall as a trigger for flooding, and predicting the flood potency as the primary impact of these two factors. Rainfall-flood transformation was simulated with the HEC-HMS Model, one of the freeware semi-distributed models commonly used in hydrological analysis. The model input is the configuration of river networks generated from the National DEM (DEMNAS), hourly rainfall during floods and other watershed parameters such as land cover, soil types and river slope. The similar simulation was also carried out on the condition of the watershed before the earthquake. Based on the results of the analysis, It can be inferred that flash floods in the Bangga River are mainly caused by heavy rainfall with long duration and landslide areas in the upper watershed triggered by the 2018 Palu Earthquake with an area of approximately 10.8 km2. The greatest depth of rainfall as a trigger for flooding is 30.4 mm with a duration of 8 hours. The results of the study also showed that landslides in the upper watershed could increase the peak flood by 33.33% from 118.56 m3/s to 158.08 m3/s for conditions before and after the earthquake.
PL
Grupa robocza DWA ES - 2.1 „Systemowe wymogi i zasady” wydala opinię dotyczącą znaczenia wyroku Trybunału Europejskiego z dn. 18 października 2012 r. dla oczyszczania ścieków ogólnospławnych w Niemczech. Dotyczy to sprawy C-301-10: Komisja Europejska przeciw Zjednoczonemu Królestwu Wielkiej Brytanii i Irlandii o naruszeniu warunków umowy państwa członkowskiego - oddziaływanie na środowisko - oczyszczanie ścieków komunalnych - Dyrektywa 91/271/EWG/ art. 3, 4 i 10 - Załącznik 1 część A i B.
EN
The DWA Working Group ES-2.1 “System-related requirements and principles” released a statement on the relevance of the Judgement of the European Court of Justice (First Chamber) of 2012 October 18 for the practice of the treatment of combined wastewater in Germany. With this, one is concerned with Case C-301-10: European Commission versus the United Kingdom of Great Britain and Northern Ireland: “Failure of a Member State to fulfil obligations - Pollution and nuisance - Urban wastewater treatment - Directive 91/271/EEC - Articles 3, 4 and 10 - Annex 1(A) and (B)”.
PL
Jako zasadniczy cel artykułu przyjęto określenie maksymalnych przepływów prawdopodobnych wywołanych deszczami ulewnymi, przyjmując założenie, że prognozowane przepływy można opisać tym samym prawdopodobieństwem jak deszcze, które je wywołały. Do prognozy przepływów o określonym prawdopodobieństwie przekroczenia (p = 100, 50, 20, 10 i 1%) wykorzystano model SWMM (Storm Water Management Model) adoptowany dla zurbanizowanej zlewni Potoku Służewieckiego. Weryfikację modelu przeprowadzono na podstawie 12-stu ulew wywołujących wezbrania w latach 2007-2008, dla których średni błąd oceny symulowanych przepływów kulminacyjnych wezbrań (w stosunku do wartości pomierzonych) wyniósł 11,3%.
EN
The main goal of this study was to evaluate the SWMM model’s (i.e. Storm Water Management Model) applicability to simulation of runoff in the Służew Stream basin (located in the southern part of Warsaw). The twelve rainfall-runoff event measured at the surveyed Rosoła profile, were used to the verification of the model. In the next phase, the SWMM model was used in order to determine the probable maximum flows, caused by estimated rainfall with 100, 50, 20, 10, 2 and 1% probability.
EN
Extreme events tend to cause large-scale slope system changes. During the last ten years, a series of extreme meteorological events caused considerable transformation of the slopes and valleys in various parts of the Carpathian Mountains. This paper presents the geomorphological effects of extreme rainfall and thaw events on the slopes of two catchments: the lososina catchment (Beskid Wyspowy) and the Hoczewka catchment with an area around the Solinskie Lake (Bieszczady Niskie). The bulk of the discussion concerns a study carried out in the Lososina catchment after three separate extreme events that were followed by a considerable transformation of the slopes due to landsliding. The studies carried out in the Biesr.cr.ady Range, where a single extreme event produced only spatially limited effects, were mainly used for comparison. '[he disparity between the responses of the two slope systems was a result of differences between the systems themselves, including their geology, geomorphology and landslide record, and of the difference in the scale of the extreme events.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.