Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  heat and mass flux
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Thermal radiation effects on flow past an impulsively started infinite vertical oscillating plate with uniform heat and mass flux is studied. The fluid considered here is a gray, absorbing-emitting radiation but a nonscattering medium. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration are studied for different physical parameters such as the radiation parameter, phase angle, Schmidt number and time. The variation of the skin-friction for different values of the parameters is also shown in a table.
EN
Finite difference solutions of the unsteady MHD flow past an impulsively started infinite vertical plate with uniform heat and mass flux are presented here, taking into account the homogeneous chemical reaction of first order. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity, temperature and concentration for different parameters such as chemical reaction parameter, Schmidt number, Prandtl number, thermal Grashof number, mass Grashof number and time are studied. It is observed that due to the presence of a first order chemical reaction, the velocity increases during the generative reaction and decreases in the destructive reaction. It is observed that the velocity decreases in the presence of the magnetic field, as compared to its absence.
3
Content available remote Flow past an exponentially accelerated vertical plate with heat and mass flux
EN
A theoretical solution for an unsteady flow past an exponentially accelerated infinite the vertical plate with prescribed uniform heat and mass flux is analyzed. The plate temperature and the concentration level near the plate are raised at a uniform rate. The dimensionless governing equations are solved using Laplace - transform technique. Velocity, temperature and concentration fields are studied for different physical parameters such as the thermal Grashof number, mass Grashof number, Schmidt number, and time. It is observed that velocity increases with increasing values of [...].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.