Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 104

Liczba wyników na stronie
first rewind previous Strona / 6 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  health sciences
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 6 next fast forward last
PL
1,4-Dioksan to lotna ciecz o słabym zapachu, która dobrze rozpuszcza się w wodzie i większości rozpuszczalników organicznych. Jako łatwopalna ciecz stwarza zagrożenie pożarowe. 1,4-Dioksan jest niestabilny w podwyższonej temperaturze i ciśnieniu i może tworzyć mieszaniny wybuchowe. Substancja jest stosowana głównie jako rozpuszczalnik w produkcji innych substancji chemicznych, jako rozpuszczalnik do farb drukarskich, powłok i klejów oraz jako odczynnik laboratoryjny. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) 1,4-dioksan został sklasyfikowany jako substancja rakotwórcza, łatwopalna, drażniąca na oczy oraz drażniąca na układ oddechowy. W artykule przedstawiono metodę oznaczania 1,4-dioksanu w powietrzu na stanowiskach pracy, znowelizowaną ze względu na proponowaną zmianę wartości najwyższego dopuszczalnego stężenia (NDS) dla tej substancji. Metoda polega na adsorpcji 1,4-dioksanu na węglu aktywnym, desorpcji mieszaniną propan-2-olu i disiarczku węgla oraz analizie chromatograficznej (GC-FID) otrzymanego roztworu. Metoda umożliwia oznaczanie 1,4-dioksanu w zakresie stężeń 2,2 ÷ 44 mg/m3 (gdy NDS 22 mg/m3) lub 0,73 ÷ 14,6 mg/m3 (gdy NDS 7,3 mg/m3), tj. 1/10 ÷ 2 proponowanych wartości najwyższego dopuszczalnego stężenia. Metoda została poddana walidacji zgodnie z normą PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,4-Dioxane is a volatile liquid with a weak odor that dissolves well in water and most organic solvents. As a flammable liquid it poses a fire hazard. 1,4-Dioxane is unstable at increased temperature and pressure and can form explosive mixtures. It is mainly used as a solvent in the production of other chemicals, as a solvent for printing inks, coatings and adhesives, and as a laboratory reagent. According to the Regulation of the European Parliament and the Council (WE 1272/2008), 1,4-dioxane is classified as a carcinogen, flammable, eye and respiratory irritant. This article presents a method for the determination of 1,4-dioxane in workplace air, revised due to a proposed change in the maximum allowable concentration (MAC) value for this substance. The method involves adsorption of 1,4-dioxane on activated carbon, desorption with a mixture of propan-2-ol and carbon disulfide, and chromatographic analysis (GC-FID) of the resulting solution. The method allows for the determination of 1,4-dioxane in the concentration range of 2.2 to 44 mg/m3 (MAC 22 mg/m3 ) or 0.73 to 14.6 mg/m3 (MAC 7.3 mg/m3 ), i.e. 1/10 to 2 of the proposed value of the maximum allowable concentration. The method has been validated in accordance with PN-EN 482. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
2
Content available remote Oznaczanie antymonu i jego związków w powietrzu na stanowiskach pracy
PL
Antymon jest stosowany wraz z innymi metalami jako dodatek do stopów czcionkowych i łożyskowych. Antymon w formie metalicznej nie jest zaklasyfikowany jako substancja zagrażająca zdrowiu, natomiast jego sole zostały tak sklasyfikowane. Niektóre związki antymonu zostały sklasyfikowane jako substancje rakotwórcze. Obowiązująca wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu na stanowiskach pracy wynosi 0,5 mg/m3 (Rozporządzenie MRPiPS 2018). Celem badań było opracowanie metody oznaczania antymonu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu antymonu i jego związków zawartych w powietrzu na filtr MCE, mineralizacji filtra w wodzie królewskiej w temperaturze 150°C oraz oznaczeniu zawartości antymonu w próbce z zastosowaniem absorpcyjnej spektrometrii atomowej (AAS) z atomizacją w płomieniu. Metoda oznaczania antymonu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Antimony is used as an additive in font and bearing alloys along with other metals. Antimony in metallic form is not classified as a health hazard, while its salts have been so classified. Some antimony compounds have been classified as carcinogens. The applicable value of the maximum allowable concentration (MAC) in air at workplaces is 0.5 mg/m3 (MRPiPS ordinance, 2018). The purpose of this study was to develop a method for the determination of antimony for occupational exposure assessment in the range of 1/10–2 of the proposed MAC values. The method consists of collecting antimony and its airborne compounds from an MCE filter, mineralizing the filter in aqua regia at 150°C, then determining the antimony content in the sample using atomic absorption spectrometry (AAS) with flame atomization. The method for the determination of antimony is presented in the form of an analytical procedure, which is included in the appendix. The scope of the article includes health and environmental health and safety issues that are the subject of research in health sciences and environmental engineering.
PL
1,2-Dihydroksybenzen (DHB) to bezbarwna substancja krystaliczna o charakterystycznym zapachu, która zmienia kolor na brązowy pod wpływem powietrza i światła. 1,2-Dihydroksybenzen stosuje się w przemyśle jako przeciwutleniacz. Narażenie pracowników na 1,2-dihydroksybenzen może wystąpić podczas jego produkcji, przetwarzania i stosowania substancji chemicznej, przy czym główne drogi narażenia pracowników na substancję to inhalacyjna, dermalna i przez układ pokarmowy. Celem badań było opracowanie metody oznaczania 1,2-dihydroksybenzenu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS (10 mg/m3). Metoda polega na pobraniu obecnego w powietrzu 1,2-dihydroksybenzenu przez układ złożony z filtra włókna szklanego i rurki pochłaniającej zawierającej dwie warstwy sorbentu XAD-7, ekstrakcji roztworem N,N-dimetyloformamidu w metanolu oraz analizie chromatograficznej otrzymanego roztworu. Metoda umożliwia oznaczanie 1,2-dihydroksybenzenu w powietrzu w zakresie stężeń 1,0 ÷ 20,0 mg/m3. Metoda została poddana walidacji zgodnie z normą PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,2-Dihydroxybenzene is a colorless crystalline substance with a characteristic odor that turns brown when exposed to air and light. It is used in industry as an antioxidant. Worker exposure to 1,2-dihydroxybenzene can occur during the production, processing and use of the chemical, through inhalation, dermal and gastrointestinal routes. The aim of the study was to develop a method for the determination of 1,2-dihydroxybenzene to assess occupational exposure within 1/10-2 of the proposed MAC value (10 mg/m3 ). The method involves the collection of 1,2-dihydroxybenzene in a system consisting of a glass fiber filter and a tube containing two layers of XAD-7 sorbent, extraction with a solution of N,N-dimethylformamide in methanol, and chromatographic analysis of the resulting solution. The method allows the determination of 1,2-dihydroxybenzene in air in the concentration range from 1.0 to 20.0 mg/m3. The method has been validated in accordance with PN-EN 482. The scope of the article includes health and environmental health and safety issues being the subject of research in health sciences and environmental engineering.
PL
W ramach VI etapu programu wieloletniego pn. „Rządowy Program Poprawy Bezpieczeństwa i Warunków Pracy” w 2023 r. odbyły się trzy posiedzenia Międzyresortowej Komisji ds. NDS i NDN, na których rozpatrywano: osiem dokumentacji wartości dopuszczalnych poziomów narażenia zawodowego, stanowisko dotyczące przedłużenia o 3 lata okresu przejściowego dla wartości dopuszczalnego stężenia tlenku azotu w sektorze górnictwa podziemnego i budowy tuneli, stanowisko Cobalt Institute, Zespołu Ekspertów ds. Czynników Chemicznych i Pyłowych odnośnie do propozycji Komitetu ds. Oceny Ryzyka ECHA (RAC) wartości OEL dla kobaltu i jego związków nieorganicznych (w przeliczeniu na Co) oraz stanowisko Międzyresortowej Komisji ds. NDS i NDN odnośnie do wyłączeń dotyczących związków niklu i ołowiu zapisanych w załączniku do rozporządzenia w sprawie NDS i NDN z 2018 r. ze zm. Międzyresortowa Komisja ds. NDS i NDN przyjęła i przedłożyła ministrowi właściwemu ds. pracy trzy wnioski w sprawie zmiany wykazu NDS i NDN w następującym zakresie: wprowadzenia wartości dopuszczalnych stężeń dla pięciu nowych substancji chemicznych, pozostawienia obowiązującej wartości NDS dla frakcji wdychalnej glifosatu (herbicyd), przedłużenia o 3 lata okresu przejściowego dla wartości dopuszczalnego stężenia tlenku azotu w sektorze górnictwa podziemnego i budowy tuneli, tj. do 21 sierpnia 2026 r., usunięcia wyłączeń dotyczących związków niklu oraz ołowiu zapisanych w załączniku do rozporządzenia w sprawie NDS i NDN z 2018 r. (implementacja dyrektywy 2022/431/UE). Wyniki działalności Komisji w 2023 r. przedstawiono w trzech notatkach, komunikacie nr XVI, publikacji popularno-naukowej, na XXIII Sympozjum PTHP, w broszurze pt. „Czynniki szkodliwie w środowisku pracy – wartości dopuszczalne w odniesieniu do substancji rakotwórczych, mutagennych i reprotoksycznych” oraz podczas cyklicznych szkoleń bhp i studiów podyplomowych.
EN
In the sixth phase of the national programme “Governmental Programme for Improvement of Safety and Working Conditions” in 2023, three meetings of the Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment were considered, during which: eight documentations of the occupational exposure limit values, a position regarding the extension of the transitional period for the OEL for nitrogen oxide by 3 years for the underground mining and tunnel construction sector, the position of the Cobalt Institute, the Group Expert of Chemical and Dust Agents regarding the proposal of the ECHA Risk Assessment Committee (RAC) for OEL values for cobalt and its inorganic compounds (as Co) and the position of the regarding the exemption for nickel and lead compounds included in the annex to the Regulation of MAC and MAI of 2018. The Interdepartmental Commission for MAC and MAI adopted and submitted to the minister responsible for labour three proposals to amend the list of MAC and MAI in the following scope: introduction of occupational concentration values for five new chemical substances, leaving the current MAC value for the inhalable fraction of glyphosate (herbicide), extension by 3 years of the transitional period for the permissible concentration of nitrogen oxide in the underground mining and tunnel construction sector, i.e. until August 21, 2026, removal of exclusions regarding nickel and lead compounds included in the annex to the regulation on NDS and NDN of 2018 (implementation of Directive 2022/431/EU). The results of the Commission’s activities in 2023 were presented in three notes, communication No. XVI, a popular science publication, at the 23rd PTHP Symposium, and in a brochure entitled “Harmful factors in the work environment - limit values for carcinogenic/mutagenic, reprotoxic substances” as well as regular occupational health and safety training and in postgraduate studies.
PL
Biopaliwa mają wiele zalet, które czynią je atrakcyjnym źródłem energii, jednak ich wpływ na organizm człowieka nie został jeszcze w pełni poznany. W artykule przedstawiono wyniki badań przeprowadzonych różnymi metodami w warunkach in vitro nad działaniem genotoksycznym czterech biopaliw otrzymanych w procesie transestryfikacji tłuszczów odpadowych. Badania uszkodzeń DNA (badanie mikrojąder) powodowanych przez biopaliwa przeprowadzono na komórkach nabłonka płuc pochodzenia nowotworowego (A549) oraz komórkach jajnika chomika chińskiego (CHO-9). Badane biopaliwa powodowały statystycznie istotny wzrost częstości występowania mikrojąder w komórkach CHO-9 (p < 0,05) w zależności od zastosowanych stężeń. Nie powodowały one jednak statystycznie znaczącego wzrostu częstości występowania mikrojąder w komórkach A549. Wyniki przeglądu baz danych (głównie MEDLINE i EMBASE) pozwoliły wskazać cztery główne źródła zagrożeń dla zdrowia ludzkiego, które są związane ze stosowaniem biopaliw: ryzyko zawodowe, zanieczyszczenie wody/gleby, zanieczyszczenie powietrza związane z produkcją i stosowaniem biopaliw oraz wpływ na ceny żywności. Wyniki przedstawionych badań stanowią jedynie etap oceny toksykologicznej biopaliw, których wpływ na komórki zależy od ich składu chemicznego i od rodzaju komórek stosowanych do badań. Biopaliwo II, otrzymywane z tłuszczu zwierzęcego i zawierające największe stężenie estrów metylowych kwasów tłuszczowych, wykazało działanie genotoksyczne (częstość występowania mikrojąder) w komórkach jajnika chomika chińskiego CHO-9. Przedstawione wyniki badań pozwolą producentom i użytkownikom biopaliw zapoznać się z ryzykiem związanym z ich produkcją i stosowaniem. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Biofuels have a number of advantages that make them an attractive source of energy. However, their effect on the human body has not been fully understood. The article presents the results of studies on the genotoxic effect of four biofuels obtained in the process of transesterification of waste fats with in vitro methods. DNA damage tests (micronucleus test) of biofuels were carried out on the cells of: neoplastic lung epithelium (A549) and Chinese hamster ovary (CHO-9). The tested biofuels caused a statistically significant increase in the frequency of micronuclei in CHO-9 cells (p < 0.05), depending on the concentrations used. However, they did not induce a statistically significant increase in the frequency of micronuclei in A549 cells. The results of the database review (mainly MEDLINE and EMBASE) identified four main sources of human health risks from biofuels: occupational hazards, water / soil contamination, air pollution from biofuel production and use, and the impact on food prices. The results of the presented studies are only a step in the toxicological assessment of biofuels, the effect of which on cells depends on their chemical composition and the type of cells used for the tests. Biofuel II, obtained from animal fat, containing the highest concentration of fatty acid methyl esters showed the strongest genotoxic effect (induced frequency of micronuclei) on CHO-9 Chinese hamster ovary cells. The presented research results could familiarize the producers and users of biofuels with the risks associated with their use. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
W Polsce dotychczas nie było konieczności oznaczania stężenia węgla elementarnego (EC) w celu oceny narażenia inhalacyjnego pracowników, ponieważ polska wartość NDS jest ustalona dla frakcji respirabilnej spalin silników Diesla. Nie ma również żadnych danych dotyczących poziomu stężeń EC w powietrzu stanowisk pracy, a narażenie na ten niebezpieczny dla zdrowia czynnik dotyczy bardzo dużej populacji pracowników zatrudnionych m.in. w podziemnych wyrobiskach górniczych, jak również strażaków, kierowców tirów, autobusów, a także pracowników stacji obsługi samochodów (Szymańska i in. 2019). Wprowadzenie do Dyrektywy Parlamentu Europejskiego i Rady (UE) 2019/130 z dnia 16 stycznia 2019 r. wartości BOELV 0,05 mg/m³ dla spalin silników wysokoprężnych Diesla w środowisku pracy, mierzonych jako węgiel elementarny, wymaga dostosowania przepisów krajowych do tej wartości i opracowania metody oznaczania węgla elementarnego. Celem prac badawczych było opracowanie metody oznaczania węgla elementarnego w powietrzu na stanowiskach pracy na poziomie 0,005 mg/m³ . W wyniku badań opracowano metodę oznaczania węgla elementarnego w powietrzu na stanowiskach pracy z zastosowaniem termo-optycznego analizatora z detektorem płomieniowo-jonizacyjnym. Metoda polega na przepuszczeniu badanego powietrza zawierającego spaliny silnika Diesla przez filtr kwarcowy umieszczony w kasecie i analizie w odpowiednim programie temperaturowym. Uzyskano oznaczalność EC 0,0041 mg/m³ . Całkowita precyzja badania wynosiła 5,3%, względna niepewność całkowita 11,6%, a niepewność rozszerzona 23,2%. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
In Poland, until now it has not been necessary to determine the elemental carbon (EC) concentrations because Polish NDS values are set for a respirable fraction of diesel exhausts. No data on the level of EC concentrations in workplace air are available although the exposure to this hazardous factor concerns a large population of workers. The exposure concerns people working in underground mines and tunneling, firefighters, lorry and bus drivers, and car service station workers. The introduction of 0.05 mg/m³ BOELV value for diesel exhaust gases in working environment, measured as elemental carbon into the Directive 2019/130 of the European Parliament, requires the adjustment of the national legislation. The aim of the study was to develop a method for determining EC in workplace air at the level of 0.005 mg/m³ . As a result, a method for determination EC in workplace air using a thermo-optical analyzer with a flame ionization detector was developed. The method consists in passing the tested air containing diesel exhaust gases through a quartz filter placed in a cassette and its analysis in an appropriate temperature program. An EC determination of 0.0041 mg/m³ was obtained. The total accuracy of the method was 5.3%, a relative total uncertainty was 11.6% and an expanded uncertainty was 23.2%. This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kwas nitrylotrioctowy (NTA), podobnie jak jego mono-, di- oraz trisodowe sole, w temperaturze pokojowej stanowi bezwonne, białe, krystaliczne ciało stałe. NTA w przeciwieństwie do swoich soli sodowych bardzo słabo rozpuszcza się w wodzie i jest nierozpuszczalny w większości rozpuszczalników organicznych. Stosuje się go jako środek zapobiegający osadzaniu kamienia kotłowego, jako środek kompleksujący jony metali podczas barwienia tkanin lub jako środek zapobiegający rozkładowi nadtlenków i wodorosiarczków w przemyśle papierniczym, jak również jako składnik detergentów i płynów czyszczących. NTA i jego sole sodowe zostały uznane za substancje potencjalnie rakotwórcze. Celem badań było opracowanie i walidacja metody oznaczania NTA i jego soli w środowisku pracy. Opracowana metoda oznaczania NTA i jego soli polega na zatrzymaniu pyłów lub aerozolu na filtrach z włókna szklanego, ekstrakcji badanych związków NaOH o stężeniu 0,2 mol/l i oznaczeniu NTA techniką wysokosprawnej chromatografii cieczowej z detekcją spektrofotometryczną (HPLC-UV-VIS). Ta metoda jest liniowa w zakresie stężeń 0,0135 ÷ 0,54 μg/ml, co odpowiada zakresowi 0,15 ÷ 6,0 mg/m3 dla próbki powietrza o objętości 180 l. Opracowana metoda analityczna umożliwia oznaczanie NTA i jego soli w powietrzu na stanowiskach pracy w obecności innych związków chelatujących, charakteryzuje się dobrą precyzją i dokładnością oraz spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Metoda została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia dotyczące zdrowia oraz bezpieczeństwa i higieny środowiska pracy, będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Nitrilotriacetic acid and its mono-, di- and trisodium salts at room temperature, are white crystalline odorless solids. NTA is poorly (in opposite to its sodium salts) soluble in water. It is soluble with ethanol, however insoluble in most of organic solvents. NTA is used as an anti-limescale agent, as a chelating agent in fabric dyeing and agent preventing of decomposition of peroxides and hydrosulphides in paper processing. It is also used as a component of some detergents and cleaning fluids. NTA and its sodium salts are suspected to be carcinogenic to humans. The aim of the work was to develop and validate method of determination of NTA and its salts in workplace air. The developed method is based on an arrest of dusts or aerosols of these substances on glass fiber filters, extraction of the filters with a 0.2 M NaOH and analysis of the resulted solution by means of HPLC-UV-VIS technique. The developed method is linear in the concentration range of 0.0135-0.54 µg/ml, which corresponds to the range of 0.15–6.0 mg/m3 for a 180-L air sample. The analytical method described in this paper enables determination of NTA and its salts in air at workplaces in the presence of other chelating agents. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of NTA at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
8
Content available remote Kwas benzoesowy. Metoda oznaczania w powietrzu na stanowiskach pracy
PL
Kwas benzoesowy jest organicznym związkiem należącym do grupy aromatycznych kwasów karboksylowych. Wykorzystuje się go głównie do produkcji fenolu, kaprolaktamu i soli benzoesowych, jako konserwant spożywczy i farmaceutyczny oraz przy produkcji herbicydów, środków owadobójczych i bakteriobójczych. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) kwas benzoesowy został sklasyfikowany jako substancja działająca szkodliwie na płuca, drażniąca skórę i powodująca uszkodzenie oczu. Celem badań było opracowanie metody oznaczania kwasu benzoesowego do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu frakcji wdychalnej kwasu benzoesowego zawartej w powietrzu na filtr z włókna szklanego pokryty węglanem(IV) sodu, desorpcji roztworem metanolu w wodzie, a następnie oznaczeniu zawartości kwasu benzoesowego w próbce z zastosowaniem chromatografii cieczowej z detektorem diodowym (UHPLC-DAD). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie kwasu benzoesowego w powietrzu w stężeniach 0,05 ÷ 1 mg/m3. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Benzoic acid is an organic compound that belongs to the group of aromatic carboxylic acids. It is mainly used in the production of phenol, caprolactam and benzoic salts, as a food and pharmaceutical preservative, and in the production of herbicides, insecticides and bactericides. According to the Regulation of the European Parliament and of the Council (WE 1272/2008), benzoic acid is classified as a substance that is harmful to the lungs, irritates the skin and causes eye damage. The aim of the study was to develop a method for the determination of benzoic acid for the assessment of occupational exposure within 1/10–2 of the proposed MAC value. The method involves taking the inhalable fraction of airborne benzoic acid onto a glass fiber filter coated with sodium carbonate(IV), desorption with a solution of methanol in water and then determining the benzoic acid content of the sample by the use of liquid chromatography with diode array detector (UHPLC-DAD). Validation requirements presented in European standard PN-EN 482 were fulfilled during the tests. The method enables determination of benzoic acid in air at concentrations of 0.05 to 1 mg/m3 . The method for determining benzoic acid has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Izopren to wysoce lotna ciecz o nieprzyjemnym i drażniącym zapachu, która w powietrzu łatwo ulega polimeryzacji z wydzieleniem energii. Izopren jest stosowany w przemyśle głównie do produkcji opon, dętek, węży ogrodowych, uszczelek oraz odzieży. Pozyskuje się go przemysłowo jako produkt uboczny krakingu termicznego benzyny i ropy lub jako produkt uboczny produkcji etylenu. Jest wytwarzany przez rośliny, w których jest wykorzystywany podczas produkcji terpenoidów, karotenoidów oraz barwników. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) izopren został sklasyfikowany jako substancja rakotwórcza, mutagenna oraz skrajnie łatwopalna. Celem badań było opracowanie metody oznaczania izoprenu do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na pobraniu izoprenu zawartego w powietrzu na rurkę wypełnioną sorbentem ORBO 351, desorpcji disiarczkiem węgla, a następnie oznaczeniu zawartości izoprenu w próbce z zastosowaniem chromatografii gazowej z detektorem płomieniowo-jonizacyjnym (GC-FID). Podczas wykonywania badań spełniono wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie w powietrzu izoprenu o stężeniach 0,8 ÷ 16 mg/m³ . Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Isoprene is a highly volatile liquid with an unpleasant and irritating odor, which is easily polymerized in the air with the release of energy. Isoprene is used in industry mainly for the production of tires, inner tubes, garden hoses, gaskets and clothing. It is extracted industrially as a byproduct of the thermal cracking of gasoline and oil, or as a byproduct of ethylene production. It can also be produced during condensation of isobutene with formaldehyde or by catalytic dehydrogenation of isopentane. It is made by plants, where it is used during the production of tarpenoids, carotenoids and dyes. According to the Regulation of the European Parliament and of the Council (WE 1272/2008), isoprene has been classified as a carcinogen, mutagen and extremely flammable substance. The aim of the study was to develop a method for determining isoprene to assess occupational exposure within 1/10−2 of the proposed MAC value. The method involves collecting airborne isoprene onto a tube filled with ORBO 351 sorbent, desorbing it in carbon disulfide, and then determining the isoprene content of the sample using gas chromatography with a flame ionization detector (GC-FID). Validation requirements presented in European standard PN-EN 482 were fulfilled during the tests. The method enables determination of isoprene in air at concentrations of 0,8−16 mg/m³ . The method for determining isoprene has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Izopren jest bezbarwną cieczą o dużej lotności, powszechnie stosowaną w przemyśle, głównie w produkcji polimerów. Jest także związkiem powstającym endogennie u zwierząt i ludzi. W Polsce liczba osób narażonych na izopren w 2020 r. wynosiła 36, w tym 8 kobiet. W latach 2020-2021 nie odnotowano pracowników zatrudnionych w warunkach powyżej 0,1 wartości NDS (tj. 10 mg/m³ ), jak i przekroczeń tej wartości. Dane o toksyczności izoprenu u ludzi są nieliczne, obserwowano jedynie słabe działanie drażniące na błonę śluzową nosa, gardła i krtani. W badaniach toksyczności przewlekłej izoprenu u myszy i szczurów (narażenie inhalacyjne) stwierdzano: zaburzenia hematologiczne, atrofię jąder, zmiany przednowotworowe oraz różne nowotwory. U myszy stwierdzono także skutki neurotoksyczne i trwałą degenerację istoty białej rdzenia kręgowego. Izopren u zwierząt doświadczalnych nie wpływał na rozrodczość oraz nie wywoływał toksyczności rozwojowej. W badaniach in vivo wykazywał działanie genotoksyczne, za które odpowiadał jego metabolit – diepoksyd. Z uwagi na działanie rakotwórcze izoprenu na myszy i szczury związek uznano za rakotwórczy kategorii 1B. Za podstawę do zaproponowania wartości NDS dla izoprenu przyjęto jego działanie neurotoksyczne obserwowane u myszy narażanych inhalacyjnie. Najniższe zastosowane stężenie 70 ppm (≈ 200 mg/m³ ) uznano za wartość LOAEC dla tego skutku. Zaproponowano stężenie 8 mg/m³ (2,8 ppm) jako wartość NDS dla izoprenu oraz oznakowanie substancji symbolem „Carc. 1B”. Brak jest podstaw do wyznaczenia wartości chwilowej NDSCh oraz dopuszczalnej w materiale biologicznym DSB, jak również do adnotacji „skóra”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Abstract Isoprene is a colourless liquid with high volatility commonly used in industry, mainly in the production of polymers. It is also synthetized endogenously in animals and humans. In Poland, the number of people exposed to isoprene in 2020 was 36, including 8 women. In 2020-2021, there were no workers exposed above 0.1 of the MAC value (i.e. 10 mg/m³ ) or MAC value. Data on the toxicity of isoprene in humans are scarce. Only weak irritant effects on the mucous membranes of the nose, throat and larynx were observed. Effects of chronic isoprene toxicity studies in mice and rats (inhalation exposure) include haematological disorders, testicular atrophy, pre-neoplastic lesions and various tumours. Neurotoxic effects and degeneration of the white matter of the spinal cord were also observed in mice. Isoprene in experimental animals did not affect reproduction or cause developmental toxicity. In in vivo studies, it showed genotoxic effects mediated by its metabolite diepoxide. Due to the carcinogenicity of isoprene in mice and rats, the compound was considered as a carcinogen category 1B. The proposed MAC value for isoprene (8 mg/m³ (2.8 ppm)) is based on the neurotoxic effects observed in mice exposed to isoprene by inhalation (LOAEC value of 70 ppm (≈ 200 mg/m³ )). There is no basis for setting the STEL and BEI values nor for label labelling with the symbol “skin”. Isoprene is labelled with the symbol “Carc. 1B”. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Ftalan diizobutylu (DiBP) [84-69-5] to ciecz bezbarwna do bladożółtej. Stosowany jest przede wszystkim w przemyśle tekstylnym i skórzanym, elektrycznym, w budownictwie, w produktach użytku domowego, a także jako dodatek zmiękczający do polimerów. DiBP nie ulega kumulacji w organizmie, a wydalany jest głównie z moczem. Charakteryzuje się krótkim okresem biologicznego półtrwania, jest szybko metabolizowany do monoestru i eliminowany głównie jako wolny monoester kwasu ftalowego (ftalan monoizobutylu, MiBP) lub sprzężony z kwasem glukuronowym monoester kwasu ftalowego. Dotychczas w Polsce dla DiBP nie ustalono wartości najwyższego dopuszczalnego stężenia (NDS) w środowisku pracy. W piśmiennictwie brak jest danych dotyczących działania drażniącego, uczulającego lub rakotwórczego u ludzi i na zwierzęta laboratoryjne. Ftalan diizobutylu jest substancją o małej toksyczności ostrej. Za skutek krytyczny działania DiBP na podstawie wyników badań przeprowadzonych na zwierzętach laboratoryjnych przyjęto działanie na rozrodczość oraz działanie hepatotoksyczne. Do wyliczenia wartości NDS przyjęto wyniki 4-miesięcznego badania na szczurach, którym DiBP podawano w paszy w dawkach: 0, 70, 700 lub 3500 mg/kg mc./dzień. W eksperymencie na zwierzętach obserwowano zmniejszenie masy wątroby, jąder, zmniejszenie liczby erytrocytów oraz zmniejszenie stężenia hemoglobiny. Dawkę 70 mg/kg mc./dzień przyjęto jako wartość NOAEL. Po zastosowaniu odpowiednich współczynników niepewności wyliczona wartość NDS wynosi 4 mg/m³ . Brak podstaw do wyznaczenia wartości chwilowej NDSCh. Zalecono oznakowanie substancji w wykazie literami „Ft” oznaczającymi substancję o działaniu szkodliwym na rozrodczość. Substancja nie spełnia kryteriów zastosowania notacji wskazującej na wchłanianie przez skórę. Brak podstaw do zaproponowania wartości dopuszczalnego stężenia (DSB) w materiale biologicznym. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Diisobutyl phthalate (DiBP) [84-69-5] is a colorless to pale yellow liquid. It is used in the textile, leather, electrical industry, construction, in household products, as well as a softening additive for polymers. DiBP does not accumulate and is mainly excreted in the urine. It has a short biological half-life and is rapidly metabolized to a monoester and eliminated mainly as free phthalic acid monoester (monoisobutyl phthalate, MiBP) or glucuronide-conjugated phthalic acid monoester. The value of the Maximum Admissible Concentration (MAC) has not been established for DiBP so far in Poland. There are no data on irritation or sensitization and on carcinogenic effect of in humans and laboratory animals in the available literature. Diisobutyl phthalate is a substance of low acute toxicity. Reproductive and hepatotoxic effects were considered as critical effects of DiBP according to the study conducted on laboratory animals. The results of a 4-month study on rats administered DiBP in the feed at doses of 0, 70, 700, 3500 mg/kg bw/day were used to calculate the maximum concentration value (MAC-TWA). In the study, a decrease in the liver weight, decrease in the testes weight, number of erythrocytes and haemoglobin level were observed. The dose of 70 mg/kg bw/day was taken as the NOAEL value. After applying appropriate uncertainty factors, the calculated TLV value is 4 mg/m³ . There are no basis to determine the short-term value (STEL) and biological limit values (BLV). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
12
Content available remote Ftalan bis(2-etyloheksylu). Metoda oznaczania w powietrzu na stanowiskach pracy
PL
Ftalan bis(2-etyloheksylu), znany jako DEHP, to substancja działająca szkodliwie na rozrodczość kategorii 1B, umieszczona na liście substancji zidentyfikowanych jako zaburzające gospodarkę hormonalną. Celem przeprowadzonych prac badawczych było opracowanie znowelizowanej metody oznaczania ftalanu bis(2-etyloheksylu), która umożliwi oznaczanie jego stężeń na poziomie 0,08 mg/m3. Metoda polega na zatrzymaniu zawartego w powietrzu ftalanu bis(2-etyloheksylu) na próbnik składający się z rurki szklanej z sorbentem XAD-2 i filtra z włókna szklanego, ekstrakcji mieszaniną aceton/dichlorometan i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chromatografii gazowej ze spektrometrią mas (kolumna RTX-5Sil MS). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Znowelizowana metoda umożliwia oznaczanie związku w powietrzu środowiska pracy w zakresie stężeń 0,08 ÷ 1,6 mg/m3. Metoda oznaczania DEHP została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Bis(2-ethylhexyl) phthalate, also known as DEHP, is a reproductive toxicant of hazard category 1B included in the list of substances identified as endocrine disruptors. The aim of the research work was to develop an updated method for the determination of DEHP that will enable its concentrations to be determined at 0.08 mg/m3. The method involves trapping the aerosol of bis(2-ethylhexyl) phthalate contained in the air onto a sampler - a glass tube with XAD-2 sorbent and a glass fiber filter, extraction with an acetone/dichloromethane mixture and chromatographic analysis of the resulting solution. The study was performed with the use of gas chromatography with a mass spectrometer (RTX5Sil MS column). Validation of the method was carried out in accordance with the requirements of the European standard PN-EN 482. The updated method allows the determination of the compound in the air of the working environment in the concentration range from 0.08 mg/m3 to 1.6 mg/m3 . The method for the determination of DEHP is presented in the form of an analytical procedure, which is included in Appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Fosforan trifenylu (FTF) jest bezbarwnym ciałem stałym o delikatnym zapachu przypominającym fenol. Związek jest stosowany jako środek zmniejszający palność przy produkcji elementów elektrycznych i samochodowych oraz jako niepalny plastyfikator używany do produkcji kliszy fotograficznej. Ponadto jest składnikiem płynów hydraulicznych i olejów smarowych, pracujących w warunkach ekstremalnych ciśnień. Fosforan trifenylu jest obecnie stosowany jako zamiennik bisfenolu A w opakowaniach z tworzyw sztucznych i innych, znalazł również zastosowanie w kosmetykach. Celem prac badawczych było opracowanie i walidacja metody oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania fosforanu trifenylu polega na adsorpcji par tej substancji na żywicy XAD-2, desorpcji przy użyciu mieszaniny dichlorometan−acetonitryl (1: 1) i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w niepolarną kolumnę kapilarną HP-5MS (o długości 30 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,25 µm). Wskazania spektrometru mas pracującego w trybie SIM w funkcji stężenia fosforanu trifenylu w badanym zakresie stężeń (10,0 ÷ 200,0 µg/ml) mają charakter liniowy. Opracowana metoda analityczna umożliwia oznaczanie fosforanu trifenylu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością, spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Triphenyl phosphate (TPP) is a colorless solid with a slight phenol-like odor. It is used as a flame retardant in the production of electrical and automotive components and as a non-flammable plasticizer used in the production of photographic film. In addition, it is a component of hydraulic fluids and lubricating oils operating under extreme pressure. TPP is currently used as a substitute for Bisphenol A in plastic and other packaging, and has also been used in cosmetics. The aim of the research was to develop and validate method of determination of triphenyl phosphate in workplace air. The developed method of TPP determination consists in adsorption of the vapors of this substance on XAD-2 resin, extraction with a dichloromethane-acetonitrile mixture and chromatographic analysis of the solution obtained in this way. The study was performed by gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a non-polar HP-5MS capillary column (length 30 m, diameter 0.25 mm and the film thickness of the stationary phase 0.25 µm). Indications of the mass spectrometer operating in SIM mode as a function of TPP concentration in the tested concentration range (10.0–200.0 µg/ml) are linear. The analytical method described in this paper enables determination of TPP in air at workplaces in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of triphenyl phosphate at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Fosforan trifenylu (TPP) jest bezbarwnym ciałem stałym o zapachu przypominającym fenol. Znajduje zastosowanie jako plastyfikator do produkcji: żywic, wosków, klejów, oprawek okularów i kosmetyków. Fosforan trifenylu charakteryzuje się małą toksycznością ostrą po narażeniu drogą: pokarmową, inhalacyjną, skórną. Wchłanianie z przewodu pokarmowego i z miejsca wstrzyknięcia jest powolne. W badaniach na zwierzętach fosforan trifenylu nie wykazywał działania drażniącego na skórę, ale powodował podrażnienie oczu u królików. Nie wykazywał działania mutagennego oraz nie wywoływał nowotworów u zwierząt (u ludzi brak danych). Fosforan trifenylu działa ogólnoustrojowo. W 13-tygodniowym badaniu toksyczności na szczurach Wistar przerost komórek wątrobowych i zmiany morfologiczne w tarczycy obserwowano przy dawce fosforanu trifenylu 105 mg/kg mc./dzień. Za wartość NOEL dla działania ogólnonarządowego i neurotoksycznego przyjęto dawkę 20 mg/kg mc./dzień. W badaniu NTP (2018) wyznaczono dolną granicę przedziału ufności dawki referencyjnej BMDL na poziomie 39 mg/kg mc. dla skutków ogólnoustrojowych, manifestujących się zmniejszeniem poziomu wolnej tyroksyny i cholesterolu HDL. We wszystkich badanych dawkach związku, tj. >55 mg/kg mc., stwierdzono zmniejszenie aktywności cholinesterazy w surowicy o 35 ÷ 70% – nie obliczono dawki referencyjnej BMD dla tego skutku. Po dawce 200 mg/kg mc./dzień u królików wystąpił zwiększony odsetek płodów bez dodatkowych płatów płuc. Za wartość NOAEL dla toksyczności rozwojowej przyjęto dawkę 80 mg/kg mc./dzień. Przyjmując wartość NOEL, obliczono wartość najwyższego dopuszczalnego stężenia (NDS) dla fosforanu trifenylu na poziomie 10 mg/m³ . Brak podstaw do ustalenia wartości chwilowej (NDSCh) oraz dopuszczalnej w materiale biologicznym (DSB). Substancja nie spełnia kryteriów klasyfikacji pod kątem wchłaniania przez skórę. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Triphenyl phosphate (TPP) is a colorless solid with a phenol-like odor. It is used as a plasticizer in the production of resins, waxes, adhesives, spectacle frames, cosmetics. Triphenyl phosphate is characterized by low acute toxicity after oral, inhalation and dermal exposure. Absorption from the gastrointestinal tract and the injection site is slow. In animal studies, it was not irritating to the skin, caused eye irritation in rabbits. Did not show mutagenic and carcinogenic effects in animals (no data in humans). Triphenyl phosphate has a systemic effect. In a 13-week toxicity study in Wistar rats, hepatic cell hyperplasia and thyroid morphological changes were observed at a dose of 105 mg/kg bw/day. The dose of 20 mg/kg bw/day was assumed as the NOEL value (the highest level of no effect) for the organ and neurotoxic effects. In the NTP study (2018), the lower confidence limit of the BMDL reference dose was set at 39 mg/kg bw. for systemic effects, as manifested by a reduction in the level of free thyroxine and HDL cholesterol. At higher doses of the compound (>55 mg/kg), serum cholinesterase activity was inhibited by 35–70% (the BMD reference dose for this effect was not calculated). At 200 mg/kg bw/day, rabbits had an increased percentage of fetuses without additional lung lobes. The dose of 80 mg/kg bw/day was assumed as the NOAEL for developmental toxicity. Assuming the NOEL value, the value of the highest allowable concentration (NDS) for TPP was calculated at the level of 10 mg/m³ . There are no grounds to establish the instantaneous value (NDSCh) and the limit value for biological material (DSB). The substance does not meet the criteria for classification for skin absorption. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Enfluran należy do wziewnych środków ogólnie znieczulających i jest izomerem położeniowym innego anestetyku – izofluranu. W temperaturze pokojowej jest bezbarwną, przezroczystą cieczą o słabym, słodkim zapachu. W przypadku narażenia zawodowego enfluran jest często stosowany w mieszaninie z innymi anestetykami wziewnym, dlatego objawy trudno przypisać do działania jednej substancji. U pracowników narażonych na mieszaninę anestetyków odnotowano takie objawy, jak: podrażnienie oczu i skóry, depresję ośrodkowego układu nerwowego, zaburzenia ze strony układu krążenia, uszkodzenia wątroby i nerek. Celem prac badawczych było opracowanie i walidacja metody oznaczania enfluranu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania enfluranu polega na adsorpcji par tej substancji na węglu aktywnym typu „Petroleum Charcoal”, ekstrakcji toluenem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Wskazania spektrometru mas pracującego w trybie SIM w funkcji stężenia enfluranu w badanym zakresie stężeń (10,0 ÷ 400,0 µg/ml) mają charakter liniowy. Opracowana metoda analityczna umożliwia oznaczanie enfluranu w powietrzu na stanowiskach pracy w obecności innych anestetyków wziewnych. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania enfluranu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii.
EN
Enflurane is an inhaled general anaesthetic and is a positional isomer of another anaesthetic, namely isoflurane. At room temperature, it is a colourless, transparent liquid with a faint, sweet odour. In occupational exposure, enflurane is often used in a mixture with other inhalation anaesthetics, so symptoms are difficult to attribute to the effects of any one substance. Symptoms such as eye and skin irritation, central nervous system depression, cardiovascular disorders, and liver and kidney damage have been reported in workers exposed to anaesthetic mixtures. The aim of this research work was to develop and validate a method for the determination of enflurane in air at workplaces. This enflurane determination method is based on the adsorption of substance vapours on the ‘Petroleum Charcoal’ activated carbon, extraction with toluene and chromatographic analysis of the resulting solution. The tests used a gas chromatograph coupled with a mass spectrometer (GC-MS) fitted with a capillary polar column ZB-WAXplus (60 m length, 0.25 mm diameter and 0.5 µm stationary phase film thickness). The SIM mass spectrometer readings as a function of enflurane concentration within the tested concentration range (10.0-400 µg/ml) are linear. The analytical method developed enables the determination of enflurane in air at workplaces in the presence of other inhalation anaesthetics. The method is precise and accurate and it meets the requirements of PN-EN 482 for the determination of chemicals. The method developed for the determination of enflurane in air at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering studies.
PL
Enfluran jest fluorowanym anestetykiem wziewnym. Dane dotyczące działania enfluranu uzyskano głównie od osób poddawanych narkozie. Minimalne stężenie enfl uranu w pęcherzykach płucnych w trakcie znieczulania, wyrażone jako procent atmosfery MAC (Minimal Anesthetic Concentration), wynosi dla osób dorosłych ok. 1,68% obj. U pacjentów obserwowano przypadki złośliwej hipertermii, niedociśnienie, depresję ośrodka oddechowego i niedotlenienie, zaburzenia rytmu serca oraz leukocytozę. Stwierdzano przypadki łagodnego i umiarkowanego uszkodzenia wątroby. Oszacowany próg obniżenia sprawności psychomotorycznej u ochotników narażonych na enfl uran z powietrzem wynosi 5% wartości MAC. Badania epidemiologiczne dotyczące narażenia zawodowego wzbudziły podejrzenie o wpływ mieszanin gazów znieczulających na częstość poronień, rozwój płodu, poród przedwczesny i wady wrodzone u dzieci, jednak w żadnym z tych badań nie określono szczegółowo rodzaju i stężenia stosowanych gazów znieczulających. W badaniu rakotwórczości i mutagenności dla enfluranu uzyskano wyniki ujemne. Badania na zwierzętach obejmowały głównie narażenie na stężenia subanestetyczne enfl uranu. W większości doświadczeń nie znaleziono dowodów na zaburzenia płodności lub uszkodzenia płodu przez enfluran u zwierząt. Skutkiem krytycznym działania enfl ranu u ludzi jest wpływ na ośrodkowy układ nerwowy, manifestujący się pogorszeniem sprawności psychomotorycznej. Do wyliczenia wartości NDS enfluranu wykorzystano wyniki badań na zwierzętach. Za wartość NOAEC dla działania układowego enfluranu przyjęto stężenie 153,2 mg/m³ (20 ppm), wyznaczone u szczurów (samców) narażanych na enfluran 8 h/dzień, 5 dni/tydzień łącznie przez 99 dni. Zaproponowano wartość NDS dla enfluranu na poziomie 38 mg/m³ (5 ppm). Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Enflurane is a fluorinated inhalation anesthetic. Data on the effects of enflurane have mainly been obtained from people undergoing anesthesia. The minimum concentration of enflurane in the alveoli during anesthesia, expressed as a percentage of the MAC (Minimal Anesthetic Concentration) atmosphere, is approx. 1.68 vol.% for adults. Cases of malignant hyperthermia, hypotension, respiratory depression and hypoxia, arrhythmias and leukocytosis have been observed in patients. Cases of mild and moderate liver injury have been reported. The expert estimate of the reduction in psychomotor performance in volunteers exposed to air enflurane is 5% of the MAC value. Occupational exposure epidemiology studies have raised concerns about the effects of anesthetic gas mixtures on miscarriage rate, fetal development, preterm labor and birth defects in children, but none of these studies specifically determined the type and concentration of anesthetic gases used. A carcinogenicity and mutagenicity study with enflurane was negative. Animal studies mainly involved exposure to subanesthetic concentrations of enflurane. In most experiments, no evidence of impaired fertility or damage to the fetus by enflurane in animals was found. A critical effect of enflurane in humans is its effect on the central nervous system, manifested by deterioration of psychomotor performance. Animal studies were used to calculate the OEL value for enflurane. The concentration of 153.2 mg/m³ (20 ppm) was assumed as the NOAEC value for the systemic effect of enflurane. MAC value for enflurane was proposed at the level of 38 mg/m³ (5 ppm). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
W ramach V etapu programu wieloletniego „Poprawa bezpieczeństwa i warunków pracy” w latach 2020-2022 odbyło się 9 posiedzeń Międzyresortowej Komisji ds. NDS i NDN, na których rozpatrywano: 26 dokumentacji wartości dopuszczalnych poziomów narażenia zawodowego, zmiany w załączniku nr 2 do rozporządzenia w punkcie „Mikroklimat gorący”, aktualizację dyrektywy 2000/54/WE Parlamentu Europejskiego i Rady z dnia 18 września 2000 r. oraz dostosowanie polskiego wykazu wartości NDS do dyrektywy 2019/1831/UE oraz dyrektyw: 2017/2398/UE, 2019/130/UE, 2019/983/UE i 2022/431/UE zmieniających dyrektywę 2004/37/WE. Międzyresortowa Komisja ds. NDS i NDN przyjęła i przedłożyła ministrowi właściwemu ds. pracy 9 wniosków w sprawie zmiany wykazu NDS i NDN w następującym zakresie: wprowadzenia wartości dopuszczalnych stężeń dla 15 nowych substancji chemicznych, zmianę obowiązujących wartości NDS/NDSCh dla 9 substancji chemicznych, zmian w zakresie mikroklimatu gorącego, usunięcia odnośnika „7)” z poz. 456 wykazu oraz zmiany jego brzmienia, zmiany zapisu w poz. 315 wykazu odnośnie do krzemionki krystalicznej oraz wprowadzenia dodatkowo dla substancji ujętych w załączniku do dyrektyw: 2017/164/UE, 2017/2398/UE oraz 2022/431/UE jednostki „ppm” do wykazu wartości NDS. W latach 2020-2022 ukazały się 2 rozporządzenia ministra właściwego ds. pracy: z dnia 9 stycznia 2020 r. (DzU 2020, poz. 61) oraz z dnia 8 lutego 2021 r. (DzU 2021, poz. 325). Wydano 12 numerów kwartalnika Podstawy i Metody Oceny Środowiska Pracy, w których opublikowano: 14 artykułów problemowych, 23 monograficzne dokumentacje, 31 metod oznaczania stężenia w powietrzu środowiska pracy czynników szkodliwych dla zdrowia oraz 3 roczne sprawozdania z działalności Komisji. Wyniki działalności Komisji w latach 2020-2022 przedstawiono w 4 publikacjach, 9 materiałach informacyjnych i 5 komunikatach oraz zaprezentowano na 3 konferencjach krajowych.
EN
In the fifth phase of the National Programme “Improvement of safety and working conditions”, 9 meetings of the Commission took place, during which the following items were discussed: 26 documentation of proposed values of occupational exposure limits (OELs), changes in Annex No. 2 to the Regulation on MAC and MAI point C.1: “Hot microclimate”, updating Directive 2000/54/EC,adapting the Polish list of MAC values to Directive 2019/1831/EU and to the following directives: 2017/2398/ EU, 2019/130/EU, 2019/983/EU and 2022/431/EU amending Directive 2004/37/EC. The Commission suggested to the Minister of Family and Social Policy the following changes of MAC and MAI values: adding 15 new chemical substances to the list of MAC, changing current values for 9 chemical substances, changing in Annex 2 regarding to the hot microclimate, deletion of reference “7)” from pos. 456 of the MAC list and changing its wording, changing in pos. 315 “Crystalline silica” and introduction of the “ppm” unit for substances included in the annex to the Directives: 2017/164/EU, 2017/2398/EU and 2022/431/EU to the list of MAC. Two ordinances of the Minister responsible for work were prepared and issued in 2020-2022. The results of the Commission’s work in 2020-2022 were propagated in 12 issues of Principles and Methods of Assessing the Working Environment, in which was published: 14 articles, 23 documents of occupational exposure levels for chemicals, 31 methods for determining the concentrations of chemicals in the working environment, and annual reports on the activities of the Commission. The results of the Commission’s activities in 2020-2022 were presented in 4 publications, 9 information materials, 5 communications and 3 national conferences.
PL
Masa poreakcyjna 5-chloro-2-metylo-2H-izotiazol-3-onu i 2-metylo-2H-izotiazol-3-onu (3: 1), określana jako CIT/MIT, w temperaturze pokojowej jest jasnożółtym ciałem stałym o strukturze krystalicznej. CIT/MIT bardzo dobrze rozpuszcza się w wodzie (>3 kg/l), natomiast słabiej w takich rozpuszczalnikach organicznych, jak: metanol, octan etylu czy toluen. CIT/MIT jest powszechnie stosowany jako środek biobójczy w produktach konsumenckich. Występuje zarówno w kosmetykach, jak i środkach czyszczących, a także produktach detergentowych (np. w farbach). Szkodliwe działanie mieszaniny CIT/MIT manifestuje się podrażnieniem skóry oraz błon śluzowych oczu. Substancja ta może również działać uczulająco zwłaszcza w stężeniach wyższych niż 0,0015%. Celem prac badawczych było opracowanie i walidacja metody oznaczania mieszaniny CIT/MIT w środowisku pracy. Opracowana metoda oznaczania mieszaniny CIT/MIT polega na pochłanianiu par lub aerozolu na płuczki z wodą destylowaną i oznaczeniu składników mieszaniny techniką wysokosprawnej chromatografii cieczowej z detekcją spektrofotometryczną (HPLC-UV-VIS). Opracowana metoda jest liniowa w zakresie stężeń 0,2 ÷ 4 μg/ml, co odpowiada zakresowi 0,02 ÷ 0,4 mg/m3 dla próbki powietrza o objętości 100 l. Sporządzona metoda analityczna umożliwia oznaczanie mieszaniny CIT/MIT w powietrzu na stanowiskach pracy w obecności innych związków z grupy izotiazolanów. Metoda charakteryzuje się dobrą precyzją i dokładnością, spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania mieszaniny CIT/MIT w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia dotyczące zdrowia oraz bezpieczeństwa i higieny środowiska pracy, będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Post reaction mixture of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one (3: 1) named as CIT/MIT in room temperature is a light yellow crystalline solid. CIT/MIT is highly soluble in water (>3 kg/l) and slightly soluble in such organic solvents, as methanol, ethyl acetate or toluene. CIT/MIT is used as biocide in consumer products like cosmetics, cleaning fluids or paints. CIT/MIT may cause side effects such as skin or eye irritation. It may also cause skin sensitization especially in concentrations higher than 0.0015%. The aim of the work was to develop and validate a method of determination of CIT/MIT in workplace air. The method is based on collection of the vapors or aerosol of these substances in water filed impingers, and analysis of the resulted solution by means of HPLC-UV-VIS technique. The developed method is linear in the concentration range of 0.2–4 µg/ml, which corresponds to the range of 0.02–0.4 mg/m3 for a 100-L air sample. The analytical method described in this paper enables determination of CIT/MIT mixture in air at workplaces in the presence of other isothiazolones. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of CIT/MIT at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
19
PL
2,6-Di-tert-butylo-4-metylofenol (BHT) to organiczny związek należący do grupy fenoli. Substancja jest bezwonnym, białym lub żółtawobiałym, krystalicznym proszkiem. Jest przeciwutleniaczem stosowanym m.in. podczas produkcji żywności, pasz dla zwierząt, olejów zwierzęcych i roślinnych, farb, mydeł, produktów naftowych, kauczuków syntetycznych oraz tworzyw sztucznych. Narażenie pracowników na BHT może wystąpić podczas produkcji, przetwarzania i stosowania substancji chemicznej. W 2021 r. Zespół Ekspertów ds. Czynników Chemicznych Międzyresortowej Komisji ds. NDS i NDN zaproponował przyjęcie dla BHT wartości NDS na poziomie 10 mg/m3. Celem badań było opracowanie metody oznaczania BHT w powietrzu na stanowiskach pracy do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na: zatrzymaniu 2,6-di-tert-butylo-4-metylofenolu obecnego w badanym powietrzu na filtrze z włókna szklanego i sorbencie XAD-7, wymyciu zatrzymanej substancji roztworem N,N-dimetyloformamidu w metanolu i analizie tak uzyskanego roztworu z zastosowaniem chromatografii gazowej z detekcją płomieniowo-jonizacyjną. Najmniejsze stężenie BHT, jakie można oznaczyć w warunkach pobierania próbek powietrza i wykonania oznaczania, wynosi 0,96 mg/m3 (dla próbki powietrza o objętości 60 litrów). Metoda oznaczania BHT została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
2,6-Di-tert-butyl-4-methylphenol (BHT) is an organic compound belonging to the phenol group and is an odorless, white or yellowish-white crystalline powder. BHT is an antioxidant used in the production of food, animal feed, animal and vegetable oils, paints, petroleum product soaps, synthetic rubbers and plastics, among others. Worker exposure to BHT can occur during the production, processing and use of the chemical. In 2021 the Group of Experts for Chemical Agents of the Interdepartmental Commission for MAC and MAI proposed MAC value of 10 mg/m3 for BHT. The aim of this study was to develop a method for determining BHT in workplace air for occupational exposure assessment within 1/10 ÷ 2 of the proposed MAC value. The method is based on retaining the BHT present in the air on a glass fiber filter and XAD-7 sorbent, leaching the retained substance with a solution of N,N-dimethylformamide in methanol and analyzing the solution by the use of gas chromatography with flame-ionization detection. The smallest concentration of BHT that can be determined under the conditions of air sampling and performing the determination is 0.96 mg/m3 (for an air sample of 60 liters). The method for the determination of BHT is presented in the form of an analytical procedure, which is included in the appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
1,2-Dihydroksybenzen (pirokatechol) jest pochodną fenolu, która w temperaturze pokojowej występuje w postacibiałego krystalicznego ciała stałego, ciemniejącego pod wpływem światła i powietrza. 1,2-Dihydroksybenzen to polifenol naturalnie występujący w wielu roślinach. Obecnie jest wykorzystywany jako przeciwutleniacz przy produkcji gumy i olejów smarowych, inhibitor polimeryzacji, a także w przemyśle chemicznym, farbiarskim i naftowym oraz w fotografii jako wywoływacz. W warunkach narażenia zawodowego kontakt z 1,2-dihydroksybenzenem może nastąpić przez układ oddechowy i kontakt dermalny podczas produkcji, pakowania lub użytkowania produktów końcowych. Działanie ogólnoustrojowe 1,2-dihydroksybenzenu jest podobne do działania fenolu. Substancja ta powoduje podrażnienie oczu, skóry, układu oddechowego, łzawienie, drgawki, podwyższone ciśnienie krwi. Bezpośredni kontakt może powodować uczulenie i stany zapalne skóry. 1,2-Dihydroksybenzen łatwo się wchłania z przewodu pokarmowego, przez nienaruszoną skórę i drogi oddechowe. Substancja jest w organizmie częściowo utleniana do benzochinonu, który łatwo wiąże się z białkami, a częściowo sprzęga się z kwasami: glukuronowym, siarkowym i innymi. Po narażeniu inhalacyjnym 1,2-dihydroksybenzen nie kumuluje się w organizmie, tylko szybko jest wydalany z moczem w postaci pochodnych, takich jak: glukuronid 1,2-dihydroksybenzenu, siarczan 1,2-dihydroksybenzenu i siarczan o metoksyfenylu. Za skutek krytyczny działania 1,2-dihydroksybenzenu można uznać działanie układowe objawiające się przerostem podśluzówki żołądka gruczołowego szczura, a także znaczącym zwiększeniem poziomu gastryny we krwi. Na podstawie tych założeń wyliczona wartość NDS wynosi 10 mg/m3, zaś ze względu na działanie drażniące na skórę i oczy wartość NDSCh przyjęto na poziomie 20 mg/m3. Ze względu na działanie rakotwórcze oraz wchłanianie przez skórę zaproponowano oznakowanie związku jako „Carc. 1B” i „skóra”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,2-Dihydroxybenzene (pyrocatechol) is a phenol derivative, which at room temperature occurs in the form of a white crystalline solid, darkening under the influence of light and air. 1,2-Dihydroxybenzene is a polyphenol naturally found in many plants. At present, it is used as an antioxidant in the production of rubber and lubricating oils, a polymerization inhibitor, as well as in the chemical, dyeing and petroleum industries, or in photography as a developer. In case of occupational exposure, contact with 1,2-dihydroxybenzene may occur during production, packaging or use of final products through respiratory and dermal contact. The systemic effect of 1,2-dihydroxybenzene is similar to that of phenol, and so it causes irritation of the eyes, skin, respiratory system, lacrimation, convulsions, increased blood pressure. Direct contact may cause sensitization and inflammation of the skin. 1,2-Dihydroxybenzene is readily absorbed from the digestive tract as well as through intact skin and respiratory tract. The substance in the body is partially oxidized to benzoquinone, which is easily bound to proteins, and part is conjugated with glucuronic, sulfuric and other acids. After inhalation exposure, 1,2-dihydroxybenzene does not accumulate in the body, but is quickly excreted in the urine in the form of derivatives such as: 1,2-dihydroxybenzene glucuronide, 1,2-dihydroxybenzene sulfate and methoxyphenyl sulfate. For the critical effect of the action 1,2-dihydroxybenzene can be considered systemic, manifested by hypertrophy of the submucosa of the glandular stomach of the rat, as well as a significant increase in the level of gastrin in the blood. Based on such assumptions, the calculated MAC value is 10 mg/m3, and due to the irritating effect on the skin and eyes, the MAC-STEL value was set at 20 mg/m3. Due to its carcinogenic effect and absorption through the skin, it was proposed to label the compound as “Carc. 1B” and “skin”. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
first rewind previous Strona / 6 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.