This article illustrates modeling of flexible neural networks for handwritten signatures preprocessing. An input signature is interpolated to adjust inclination angle, than descriptor vector is composed. This information is preprocessed in proposed flexible neural network architecture, in which some neurons are becoming crucial for recognition and adapt to classification purposes. Experimental research results are compared in benchmark tests with classic approach to discuss efficiency of proposed solution.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.