Let Zα and Zα be two independent positive α-stable random variables. It is known that (Zα/Zα)α is distributed as the positive branch of a Cauchy random variable with drift. We show that the density of the power transformation (Zα/Zα)β is hyperbolically completely monotone in the sense of Thorin and Bondesson if and only if α ≤ 1/2 and |β| ≥ α/(1−α). This clarifies a conjecture of Bondesson (1992) on positive stable densities.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.