Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  guanylurea dinitramide
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Boron and potassium nitrate are the key components for the ignition system of the igniter composition for rocket propellants. Boron-potassium nitrate-ethyl cellulose (B:KNO3:PEC) in proportions of 30:70:10 is a well established igniter composition. The composition delivers a maximum pressure in the range 4.0-4.6 MPa in closed vessel firing at a loading density of 0.01 g/cm3. For the effective ignition of a large booster stage propellant (length more than 4 m), an enhancement in the maximum pressure, without affecting safety, is a prime requirement. The use of guanylurea dinitramide (GUDN) in an igniter composition has not been reported in the literature. Hence, the present study on the effect of GUDN on the combustion behaviour and sensitivity of the B/KNO3 composition (30/70) has been carried out. Several compositions containing different weight percents of GUDN were prepared. Their thermal behaviour was determined by thermal analysis DSC-TGA. Their sensitivities to external stimuli such as impact, friction and spark were evaluated. The results of closed vessel firings indicated that GUDN-based igniter compositions produced higher peak pressures (up to 4.5 MPa to 5.8 MPa), with invariably lower burning times, compared to the control composition. The REAL computer programme indicated an increase in the flame temperature of the composition from 2238 K to 2425 K on addition of GUDN. All of the compositions were insensitive towards friction up to 36 kg, and towards spark up to 5 J energy.
EN
Guanylurea dinitramide (GUDN or FOX-12) is a stable salt of dinitramidic acid with good thermal stability, and is a good candidate for insensitive formulations. Thermal analysis reveals the compatibility of GUDN with benchmark explosives such as RDX and TNT in melt cast explosive formulations. The paper describes a thermal and sensitivity study of GUDN with RDX and TNT. In the present study GUDN was evaluated as a possible replacement for RDX/TNT based aluminized and non aluminized melt cast explosive formulations. The thermal properties of the composition were investigated as well as its sensitivity to impact and friction. Its thermal decomposition behavior was compared to a control composition based on RDX and TNT. The thermal and sensitivity results proved the worth of these compositions for melt cast explosive applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.