Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  groundwater flow model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Modern hydrogeological research uses numerical modelling, which is most often based on the finite difference method (FDM) or finite element method (FEM). The present paper discusses an example of application of the less frequently used FEM for simulating groundwater circulation in the vicinity of the intake at Świniarsko near Nowy Sącz. The research area is bordered by rivers and watersheds, and within it, two well-connected aquifers occur (Quaternary gravelly-sandy sediments and Paleogene cracked flysch rocks). The area was discretized using a Triangle generator, taking into account assumptions about the nature and density of the mesh. Rivers, wells, an irrigation ditch and infiltration of precipitation were projected onto boundary conditions. Conditions of groundwater circulation in the aquifer have been assessed based on a calibrated model, using water balance and a groundwater level contour map with flow path lines. Application of the program based on FEM, using smooth local densification of the discretization mesh, has allowed for precise mapping of the location of objects that significantly shape water circulation.
EN
During the last nine years, the 133 main groundwater reservoirs in Poland (MGR) have been documented; these were published last year. Some of these are situated in the coastal zone of the southern Baltic Sea. MGR numbers 111 and 112 are in the Gdańsk area and are discussed in the present paper. The study area is situated on the border region of the moraine plateau of the Cashubian Lakeland, the western part of the Vistula River delta plain and the Bay of Gdańsk. The area of the main groundwater reservoir in no. 112 is developed in Quaternary strata and referred to as Żuławy Gdańskie; it comprises predominantly the city of Gdańsk and slightly exceeds 100 km2. There is also a Cretaceous aquifer, rich in groundwater resources, which is named MGR no. 111, beneath the Quaternary reservoir mentioned above. The area studied and modelled totalled 364 km2, on account of the hydraulic connection between these aquifers. Methods of hydrogeological research, groundwater flow simulations, resources calculation are outlined in the present paper.
EN
The paper presents two already used in practice ways of the hydrogeological parametrization of the regional groundwater flow models. One way is the use of the hydraulic transmissivity resulting in the construction of the authors called “T” models for use in the groundwater resources quantitative assessments. The second way is the use of the hydraulic conductivity k to construct what the authors call the “k” models used for the evaluation of the Main Groundwater Reservoirs protection zones. The authors also present their attitude to the randomization of the hydrogeological parameters.
EN
Model of the Major Groundwater Basin (MGB) 133 Młotkowo was developed in order to analyze available water resources and verify boundaries of protection zone. MGB 133 Młotkowo is located in southern part of Krajeńskie Lakeland (NW Poland). Dimensions of the basin estimated by Kleczkowski et al. (1990) were uncertain, so area of the model is four times larger than the MGB 133 area. In order to gain the most reliable results detailed identification and verification of model parameters such as hydraulic conductivity of each layer, hydraulic conductivity of sediments in surface water bodies and recharge rate from precipitation was made. Results of the calculations confirm, that the groundwater basin is larger than it was assumed and eventually the disposable resources module is 8.58 m3/h/km2. The recharge zone is located inside the basin area, thus determination of protection zone boundaries of the basin as identical with boundaries of MGB 133 is sufficient.
EN
Groundwater recharge calculations were made during the study of Gdańsk aquifer system resources and detailed research of it’s recharge area, in the central part of the Kashubian Lake District. Recharge was determined using several methods: the climatic method, water table fluctuation (WTF), local and regional model calculation, infiltration rate method, and base flow analysis. There were analyzed both: the amount of measured and corrected precipitation.
EN
The paper presents macroscopic model of traffic flow during morning rush hours in a whole average middle-sized city. It was assumed that the spatial distribution of actual velocity of vehicles in particular zones of the city is inhomogeneous. It was further assumed that all drivers pick their route so as to get in the shortest possible time from the starting point to their destination point. It was proposed to use two-dimensional, continuous, stationary groundwater flow model GWTF based on Boussinesq equation, which was solved numerically using FEM in order to determine the optimal, in terms of duration, route in inhomogeneous area.Then 5000 pairs of start-finish points were generated randomly, using 2-dim normal distribution and optimal routes were determined for each pair. The resulting model was compared to STTF model of searching for the cheapest path in graph and SD model of searching for the shortest, in terms of distance, connection between starting and finish point. The statistical analysis of data received from those three models led to the conclusion that the continuous GWTF model determines trajectories of similar duration as STTF model and distinctly shorter than SD. The models discussed were used to calculate the density of traffic flow in the whole city, proving that it is significantly affected by the choice of driving strategy. The proposed model can be used for the modification of streets’ network and their flow capacity in order to reduce points of very big traffic density.
PL
W pracy przedstawiono makroskopowy model ruchu pojazdów podczas porannego szczytu w mieście średniej wielkości. Przyjęto niejednorodny rozkład rzeczywistych prędkości poruszania się pojazdów w poszczególnych rejonach miasta. Założono, że każdy kierowca wybiera trasę przejazdu minimalizując czas przejazdu z punktu startowego do punktu docelowego. Do wyznaczenia optymalnej, według tego kryterium, trasy zaproponowano analogię dwuwymiarowego ciągłego, stacjonarnego modelu przepływu wód podziemnych GWTF (GroundwaterTrafficFlow) oparty na równaniu Boussinesq’a, które numerycznie rozwiązano z wykorzystaniem metody elementów skończonych. Następnie wygenerowano losowo, z wykorzystaniem 2-wymiarowegorozkładu normalnego 5000 par punktów start-meta i wyznaczono dla nich optymalne trajektorie przejazdu. Wyniki otrzymane z modeluGWTF porównano z modelem STTF (ShortestTime TrafficFlow) wyszukiwania najtańszej ścieżki w grafie i z modelem SD (ShortestDistance)wyszukiwania najkrótszego, w sensie odległości, połączenia pomiędzy punktem startowym i docelowym. Analiza statystyczna otrzymanych z trzech modeli wyników pozwoliła stwierdzić, że model ciągły GWTF wyznacza trajektorie o czasach przejazdu zbliżonych do modelu STTF i wyraźnie krótszych niż SD. Omawiane modele wykorzystano do obliczenia gęstości ruchu samochodowego w całym mieście wykazując, że w wybór strategii przejazdu istotnie wpływa na przestrzenny rozkład gęstości ruchu. Opracowany model może być wykorzystany do modyfikacji sieci ulic i ich przepustowości w celu redukcji punktów o bardzo dużej gęstości ruchu.
PL
Badania modelowe, obejmujące zasięgiem zlewnie Przemszy i Białej Przemszy, przeprowadzono w celu oszacowania zasobów dyspozycyjnych tego obszaru. Powierzchnia modelowanego obszaru wynosi ponad 2 tys. km2 i jest o ok. 680 km2 większa od powierzchni dokumentowanych zlewni. W artykule omówiono zastosowaną schematyzację warunków hydrogeologicznych, ze szczególnym uwzględnieniem odwodnień kopalnianych. Skomplikowany układ hydrostrukturalny, dodatkowo silnie zmieniony antropogenicznie na skutek prowadzonych odwodnień kopalnianych oraz intensywnego poboru wód w celach użytkowych, prowadzi do powstania złożonego układu hydrodynamicznego obszaru. W skali lokalnej warunki hydrodynamiczne należy traktować jako nieustalone. W skali regionalnej, z pewnym przybliżeniem, można je traktować jako quasi-stacjonarne. Ze względu na skomplikowane warunki hydrogeologiczne, które uniemożliwiają zastosowanie prostej schematyzacji polegającej na wydzieleniu sekwencji warstw wodonośnych i słabo przepuszczalnych, zdecydowano się na opracowanie modelu przestrzennego, składającego się z siedmiu ciągłych warstw o zróżnicowanym przestrzennie rozkładzie współczynnika filtracji, który odpowiada zróżnicowaniu litologicznemu skał.
EN
The aim of hydrogeological modelling of the Przemsza and Biała Przemsza catchments was to estimate their disposable resources. The modelled area is more than 2000 square kilometres in size, and is about 680 square kilometres larger than the area of the catchments. This article focuses on the discussion on the applied model schematization, which takes into consideration mine drainage. The study area is characterised by a complicated hydrogeological system, additionally changed by human activity (mine drainage and water consumption for utility purposes). On a local scale, the hydrodynamic conditions should be regarded as transient. On a regional scale, with some approximation, they can be regarded as quasi-stationary. Complexity of the hydrogeological conditions prevents use of simple schematization involving the separation of a sequence of aquifers and aquitards. In this situation, it has been decided to develop a hydrogeological model consisting of seven layers, using lithological criteria.
PL
Model matematyczny zbiornika GZWP 208 Biskupiec wykonano w celu oszacowania jego zasobów oraz weryfikacji granic i obszarów ochronnych. Powierzchnia modelowanego obszaru jest 2,5 razy większa niż sam zbiornik. Dzięki temu uwzględniono główne bazy drenażu, jakimi są głęboko wcięte jeziora: Dadaj, Tejstymy, Gieladzkie i Lampackie, a które znajdują się poza obszarem GZWP 208. Wyniki obliczeń potwierdziły, że zbiornik Biskupiec stanowi obszar zasilania dla sąsiednich terenów, wody odpływają głównie w kierunku północnym, a także na wschód i zachód, w mniejszym stopniu na południe. Ponieważ zbiornik nie jest zasilany lateralnie, nie ma potrzeby wyznaczania obszaru ochronnego poza jego granicami. Moduł zasobów dyspozycyjnych oszacowano na 7,5 m3/h/km2.
EN
In order to evaluate groundwater resources and to verify boundaries and protection zones, a mathematical model of the Major Groundwater Basin (MGWB) 208 Biskupiec was developed. The model area is more than two times larger than the MGWB range. Therefore, the model includes the main discharge zones located outside the basin 208, which are the deeply indented lakes of Dadaj, Tejstymy, Gieladzkie and Lampackie. The calculation results confirmed that the MGWB Biskupiec is the recharge area for neighbouring terrains. The waters flow away from the basin mainly to the north, east and west, and to a lesser extent to the south. The Biskupiec basin is not recharged laterally, so there is no need to assign the protection zones beyond its borders. Disposable resources module is 7.5 m3/h/km2.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.