Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ground granulated blast furnace slag
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effects of supplementary cementitious materials (SCM) on the characteristics and internal structure of synthetic aggregate made from ground granulated blast furnace slag are investigated in this study (GGBS). Due to its high pozzolanic activity, GGBS was shown to be superior to other SCM materials, enhancing both the strength and durability of synthetic aggregate. Because sintering uses a lot of energy and generates a lot of pollutants, using a cold-bonded approach to make low density lightweight aggregates is particularly significant from an economic and environmental standpoint. Thus, the utilisation of ground granulated blast furnace slag (GGBS) as a substitute material in the production of green artificial lightweight aggregate (GLA) using the cold bonding method was discussed in this work. Admixtures of ADVA Cast 203 and Hydrogen Peroxide were utilised to improve the quality of GLA at various molar ratios. The freshly extracted GLA was then evaluated for specific gravity, water absorption, aggregate impact, and aggregate crushing in order to determine the optimal proportion blend. As a result, the overall findings offer great application potential in the development of concrete (GCLA). It has been determined that aggregates with a toughness of 14.6% and a hardness of 15.9% are robust. The compressive strength test found that the GCLA has a high strength lightweight concrete of 37.19 MPa and a density of 1845.74 kg/m3. The porous features developed inside the internal structure of GLA have led to GCLA’s less weight compared to conventional concrete.
EN
This paper elucidated the potential of electron backscatter diffraction analysis for ground granulated blast furnace slag geopolymers at 1000°C heating temperature. The specimen was prepared through the mechanical ground with sandpaper and diamond pad before polished with diamond suspension. By using advanced technique electron backscatter diffraction, the microstructure analysis and elemental distribution were mapped. The details on the crystalline minerals, including gehlenite, mayenite, tobermorite and calcite were easily traced. Moreover, the experimental Kikuchi diffraction patterns were utilized to generate a self-consistent reference for the electron backscatter diffraction pattern matching. From the electron backscatter diffraction, the locally varying crystal orientation in slag geopolymers sample of monoclinic crystal observed in hedenbergite, orthorhombic crystal in tobermorite and hexagonal crystal in calcite at 1000°C heating temperature.
EN
The development of an ecofriendly binder containing high volume of cement replacement by incorporating two waste materials for the use in soil stabilization. This paper investigates the possibility of replacing ordinary Portland cement (OPC) by two waste and by-product materials for the use of a silty clay soil stabilization purpose. The soil was treated by 9.0% OPC where this mixture was used as a reference for all tests. Two by-product materials: ground granulated blast furnace slag and cement kiln dust were used as replacement materials. Consistency limits, compaction and unconfined compression strength (UCS) tests were conducted. Scanning electron microscopy (SEM) analysis was carried out for the proposed binder to investigate the reaction of products over curing time. Seven curing periods were adopted for all mixtures; 1, 3, 7, 14, 28, 52, and 90 days. The results showed that the strength development over curing periods after cement replacement up to 45–60% was closed to those of the reference specimens. The microphotographs of SEM analysis showed that the formation of Ettringite and Portladite as well as to calcium silicate hydrate gel was obvious at curing periods longer than 7 days reflected that the replacing materials succeed to produce the main products necessary for binder formation.
EN
This study investigated the influence of curing conditions and the inclusion of ground granulated blast furnace slag (GGBS) on the mechanical performance of ultra-high-performance strain-hardening cementitious composites (UHP-SHCC). Air- and wet-curing conditions were applied for 28 and 91 days, respectively. Compressive strength and direct tensile tests were performed, and the microstructure of the tested cementitious matrix and surface of the polyethylene (PE) fibers were inspected using scanning electron microscopy. The results showed that 3 months of wet-curing notably deteriorated the tensile performance of UHP-SHCC with or without GGBS as compared to those at the curing age of 1 month, whereas the 3 months of air-curing further enhanced the tensile performance. Therefore, the 3 months air-cured specimens, using binders consisting only of ordinary portland cement (OPC) or OPC with GGBS, could develop the highest tensile strength and strain capacity of up to 12.1 MPa and 9.1% or 13.6 MPa and 9.1%, respectively. The inclusion of GGBS led to a higher rate of stress development as well as tensile strength at the air-curing age of 3 months, resulting in the highest energy absorption capacity of 985 kJ/m3 measured in this study.
EN
Currently, ordinary Portland cement is used most of the time as a sticky material of the concrete produced for construction purposes. Unfortunately, the function of the prefabricated concrete made of Portland Cement against chemical factors such as acid attacks and sulfate attacks, raises concerns, because the grout of Portland Cement decomposes, being exposed to acids. Novel construction materials with a strength better than that of the ordinary Portland concrete are required, to be able to resist such corrosive factors. This essay presents an assessment of the strength of GGBFS-based geopolymer concrete samples against acid attacks. In this research, geopolymer concrete beams reinforced with steel and GFRP rebars, also the fabricated cubic concrete samples, underwent tests of mechanical properties, being exposed to acid environments with different pH levels of 4, 6 and 8. Beams reinforced with steel rebars proved to be of a higher strength compared with beams reinforced with GFRP. On an average, the forces applied on the beams reinforced with steel on day 90 and day 300 were, respectively, 14.47 and 14.78% higher than the forces applied on the beams reinforced with GFRP. Compared with the beams reinforced with GFRP, those reinforced with steel revealed to be of a higher resistance when exposed to the environmental changes.
6
Content available remote Wytrzymałość betonu geopolimerowego opartego na żużlu i popiole lotnym
PL
Beton geopolimerowy jest jednym z nowoczesnych materiałów budowlanych zastępujących klasyczny beton z cementu portlandzkiego. Przeprowadzono wiele badań dotyczących zastosowania betonu geopolimerowego jako materiału budowlanego, jednak nieliczne z nich dotyczą jego zastosowania w konstrukcjach. Praca przedstawia porównanie wyników wytrzymałości wiązania stali z betonem zwykłego i geopolimerowego. Przeprowadzono badania przyczepności metodą „pull out” na 27 belkach o wymiarach 100×100×200 mm, wykonanych z trzech różnych klas betonu geopolimerowego, a mianowicie M20, M35 i M50, zbrojonych prętami TMT o średnicy 16 mm. Uzyskane wyniki badań pozwoliły na opracowanie równania opisującego przyczepność betonu geopolimerowego do stali, którego poprawność zweryfikowano. Znormalizowane naprężenie przyczepność-przemieszczenie betonu geopolimerowego przyjmuje w przybliżeniu formę dwuliniową.
EN
One of the new construction materials evolved as a replacement to Ordinary Portland cement concrete is geopolymer concrete. Many investigations have been done to develop geopolymer concrete as a material but researches on structural use of geopolymer concrete are very few. This paper presents the experimental investigation on the bond behavior of normal and geopolymer concrete. The bond strength behavior of 27 geopolymer concrete prisms of size 100×100×200 mm of grades M20, M35 and M50 reinforced with 16 mm TMT rod is studied using pull out tests. An equation for the bond strength of geopolymer concrete is obtained from the experimental results and is also validated. The normalized bond-slip behavior of GPC can be idealized as bilinear curve.
PL
Artykuł przedstawia wyniki badań reologicznych, które miały na celu sprawdzenie, jak zawartość mielonego granulowanego żużla wielkopiecowego wpływa na granicę płynięcia oraz lepkość plastyczną po 5 min od zmieszania zapraw z cementów portlandzkich żużlowych. Badane cementy portlandzkie żużlowe otrzymywane były przez mieszanie czterech cementów portlandzkich o różnym składzie chemicznym i fazowym z trzema różnymi mielonymi granulowanymi żużlami wielkopiecowego różnego pochodzenia, w ilości 6, 10, 20 i 30% masy cementu. Granica płynięcia i lepkość plastyczna określane były za pomocą reometru Viskomat NT. Otrzymane wyniki wskazują na znaczący wpływ zawartości C3A w cemencie na właściwości reologiczne zapraw oraz że obecność mielonego granulowanego żużla wielkopiecowego w cemencie generalnie obniża granicę płynięcia, a także nieznacznie podwyższa lepkość plastyczną.
EN
The paper presents the results of rheological tests conducted to check how the content of ground granulated blast–furnace slag influences the yield stress and plastic viscosity of mortars with portland slag cement after 5 minutes from mixing. Tested Portland slag cements were obtained by mixing four Portland cements of various chemical and phase composition with three different ground granulated blast furnace slags of various origin, in an amount of 6, 10, 20 and 30% of the cement mass. The yield stress and plastic viscosity were determined using the Viskomat NT rheometer. The obtained results indicate a significant effect of the C3A content in cement on the rheological properties of mortars, and that the presence of ground granulated blast–furnace slag in cement generally lowers the flow limit, and slightly increases the plastic viscosity.
PL
W artykule zaprezentowano wyniki badań wytrzymałości na ściskanie zapraw wykonanych z cementu portlandzkiego i cementu z dodatkiem mielonego granulowanego żużla wielkopiecowego. Zaprawy zostały poddane modyfikacji domieszkami przyspieszającymi twardnienie o różnych bazach chemicznych. Wytrzymałość na ściskanie badana była w terminach od 12 godzin do 360 dni. Zauważono, że efektywność działania domieszek jest wyższa dla cementu z dodatkiem żużla w terminie do 28 dni. Po tym terminie niektóre domieszki również korzystnie wpływają na wytrzymałość tych zapraw. Wykazano, że nie można jednoznacznie stwierdzić, że każda domieszka przyspieszająca powoduje obniżenie długoterminowej wytrzymałości na ściskanie zapraw wykonanych z niektórych rodzajów cementu. Zaprawy z cementu z dodatkiem MGŻW, modyfikowane domieszkami przyspieszającymi, osiągają wytrzymałość zbliżoną do końcowej już po 7 dniach, w czym upodabniają się (zachowując oczywiście skalę) do niemodyfikowanej zaprawy z CEM I 52,5R.
EN
This paper presents results of compressive strength tests for Portland cement mortars and mortars with addition of ground granulated blast furnace slag (GGBFS). Mortars were modified with usage of four different hardening accelerating admixtures. Compressive stress tests were conducted after 12 hours up to 360 days of curing. Effectiveness of those agents is higher for mortars made of cement with addition of GGBFS up to 28th day. After this term some of those admixtures have profitable influence also. It is shown that not every hardening accelerating admixture cause decline of long-term compressive strength of mortars made of some types of cement. Mortars with addition of GGBFS obtains compressive strength after 7 days of curing close to its final strength. It is similarity to CEM I 52,5R mortars without modification by admixtures (with notice to scale of phenomenon).
EN
The mineral sequestration using waste products is a method of reducing CO2 emissions that is particularly interesting for major emitters and producers of mineral wastes, such as iron and steel industries. The CO2 emissions from iron and steel production amounted to 6,181.07 kt in 2014 (PNIR 2016). The aforementioned industry participates in the EU emission trading system (EU ETS). However, blast furnace processes produce mineral waste – slag with a high content of CaO which can be used to reduce CO2 emissions. Metallurgical slag can be used to carry out direct (a one-step process) or indirect (two-stage process) process of mineral sequestration of carbon dioxide. The paper presents the degree of carbonation of the examined samples of granulated blast furnace slags defined by the six-digit code (10 02 01) for the waste and the respective two-digit (10 02) chapter heading, according to the Regulation of the Minister of the Environment of 9 December 2014 on the waste catalogue. The carbonation process used the direct gas-solid method. The slags were wetted on the surface and treated with CO2 for 28 days; the obtained results were compared with the analysis of fresh waste products. The analyzed slags are characterized by a high content of calcium (nearly 24%), while their theoretical binding capacity of CO2 is up to 34.1%. The X-ray diffraction (XRD) analysis of the phase composition of slags has revealed the presence of amorphous glass phase, which was confirmed with the thermogravimetric (DTA/TG) analysis. The process of mineral sequestration of CO2 has resulted in a significant amount (9.32%) of calcium carbonate – calcite, while the calculated degree of carbonation of the examined blast furnace slag is up to 39%. The high content of calcium, and a significant content of CaCO3–calcite, has confirmed the suitability of the discussed waste products to reduce carbon dioxide emissions.
PL
Mineralna sekwestracja przy wykorzystaniu odpadów jest metodą redukcji CO2 szczególnie interesującą dla znaczących emitentów, którzy są zarazem wytwórcami odpadów mineralnych, tak jak przemysł hutniczy. Emisja CO2 z produkcji żelaza i stali wyniosła 6 181,07 kt w 2014 roku (PNIR 2016). Przemysł ten bierze udział w systemie handlu pozwoleniami na emisję ditelnku węgla − EU ETS, a zarazem w procesach wielkopiecowych powstają odpady mineralne − żużle o wysokiej zawartości CaO, które mogą być stosowane do redukcji emisji CO2. Żużle hutnicze mogą być stosowane do realizacji procesu mineralnej sekwestracji ditelenku węgla metodą bezpośrednią (jednoetapową) oraz pośrednią (dwuetapową). W artykule przedstawiono wyniki badań stopnia karbonatyzacji granulowanych żużli wielkopiecowych klasyfikowanych według Rozporządzenia Ministra Środowiska z dnia 9 grudnia 2014 r. w sprawie katalogu odpadów do podgrupy 10 02 odpady z hutnictwa żelaza i stali jako odpad o kodzie 10 02 01. Do prowadzenia procesu karbonatyzacji zastosowano metodę bezpośrednią gaz−ciało stałe. Zwilżone żużle były poddawane procesowi sekwestracji ditelnku węgla przez 28 dni, a uzyskane wyniki porównano z analizą świeżych odpadów. Poddane badaniom żużle charakteryzują się wysoką zawartością wapnia, wynoszącą prawie 24%, a ich obliczona teoretyczna pojemność związania CO2 wynosi 34,1%. Analiza składu fazowego żużli wykorzystanych w badaniach, prowadzona metodą rentgenograficzną, wykazała jedynie obecność amorficznej fazy szklistej, co potwierdzają wyniki analizy DTA/TG. Proces mineralnej sekwestracji CO2 spowodowało powstanie w znaczącej ilości 9,32% węglanu wapnia–kalcytu, a obliczony stopień karbonatyzacji badanych żużli wielkopiecowych wynosi maksymalnie 39%. Wysoka zawartość wapnia oraz powstanie znaczącej zawartości CaCO3–kalcytu, potwierdza szczególne predyspozycje tych odpadów do redukcji emisji ditlenku węgla.
EN
The aim of this paper is to study the effect of using Ground Granulated Blast Furnace Slag (GGBS) as a partial replacement to cement in reinforced concrete (RC) beams. A total of eight beams were cast with different percentages of GGBS replacement of 0%, 50%, 70%, and 90%, respectively. The performance of the tested specimens were evaluated and compared to that of a control beam without GGBS (0%). In addition, the concrete compressive and tensile strength of the different concrete mixes were evaluated and compared. Overall, test results indicated that the compressive and tensile strength of the different mixtures were quite similar. In addition, the performance of RC beams with GGBS replacement up to 70% is similar to that without GGBS. However, the stiffness and strength for the beam specimens with 90% GGBS were lower than that without GGBS by 16% and 6%, respectively. It was also concluded that the use of high percentage of GGBS up to 70% as a replacement to cement is practical and will not comprise the performance of RC beams. Furthermore, such replacement will contribute to the reduction in CO2 emission (carbon footprint) and therefore encourage the use of such sustainable and green concrete.
PL
W artykule zaprezentowano wyniki badań wytrzymałości na ściskanie zapraw wykonanych z cementu portlandzkiego i cementu z dodatkiem mielonego granulowanego żużla wielkopiecowego. Zaprawy zostały poddane modyfikacji domieszkami przyspieszającymi twardnienie o różnych bazach chemicznych. Wytrzymałość na ściskanie badana była w terminach od 12 godzin do 360 dni. Zauważono, że efektywność działania domieszek jest wyższa dla cementu z dodatkiem żużla w terminie do 28 dni. Po tym terminie niektóre domieszki również korzystnie wpływają na wytrzymałość tych zapraw. Wykazano, że nie można jednoznacznie stwierdzić, że każda domieszka przyspieszająca powoduje obniżenie długoterminowej wytrzymałości na ściskanie zapraw wykonanych z niektórych rodzajów cementu. Zaprawy z cementu z dodatkiem MGŻW, modyfikowane domieszkami przyspieszającymi, osiągają wytrzymałość zbliżoną do końcowej już po 7 dniach, w czym upodabniają się (zachowując oczywiście skalę) do niemodyfikowanej zaprawy z CEM I 52,5R.
EN
This paper presents results of compressive strength tests for Portland cement mortars and mortars with addition of ground granulated blast furnace slag (GGBFS). Mortars were modified with usage of four different hardening accelerating admixtures. Compressive stress tests were conducted after 7 days of curing close to its final strength. It is similarity to CEM I 52,5R mortars without modification by admixtures (with notice to scale of phenomenon).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.