Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  grey wolf optimization algorithm
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study explored the development of an optimal effective solar absorber by leveraging recent advancements in artificial intelligence and nanotechnology. A predictive computational approach for designing a multilayer metal-dielectric thin film solar selective absorber, specifically the SiO2/Cr/SiO2/Cr/SiO2/Cu structure was proposed. The adopted approach integrates the transfer matrix method (TMM) as a predictive electromagnetic tool and combines it with the swarm-based heuristic algorithm grey wolf optimization (GWO) linked to machine learning algorithms, specifically the artificial neural network (ANN). Through dynamic modeling and rigorous testing against multiple static versions, the adopted approach demonstrates exceptional predictive performance with an value of 0.999. The results obtained using this novel GWO-ANN approach reveal near-perfect broadband absorption of 0.996534 and low emission of 0.194170594 for the designed thin film structure. These outcomes represent a significant advancement in photo-to-thermal conversion efficiency, particularly for a working temperature of 500 °C and a solar concentration of 100 suns, showcasing its potential for practical applications across various fields. Additionally, the designed structure meets the stringent thermal stability requirements necessary for current Concentrated solar power (CSP) projects. This emphasizes its suitability for integration into existing CSP systems and highlights its potential to contribute to advancements in solar energy technology.
EN
Aiming to address power consumption issues of various equipment in metro stations and the inefficiency of peak shaving and valley filling in the power supply system, this study presents an economic optimization scheduling method for the multi-modal “source-network-load-storage” system in metro stations. The proposed method, called the Improved Gray Wolf Optimization Algorithm (IGWO), utilizes objective evaluation criteria to achieve economic optimization. First, construct a mathematical model of the “source network-load-storage” joint system with the metro station at its core. This model should consider the electricity consumption within the station. Secondly, a two-layer optimal scheduling model is established, with the upper model aiming to optimize peak elimination and valley filling, and the lower model aiming to minimize electricity consumption costs within a scheduling cycle. Finally, this paper introduces the IGWO optimization approach, which utilizes meta-models and the Improved Gray Wolf Optimization Algorithm to address the nonlinearity and computational complexity of the two-layer model. The analysis shows that the proposed model and algorithm can improve the solution speed and minimize the cost of electricity used by about 5.5% to 8.7% on the one hand, and on the other hand, it improves the solution accuracy, and at the same time effectively realizes the peak shaving and valley filling, which provides a proof of the effectiveness and feasibility of the new method.
EN
Safety plays a crucial role in construction projects. Safety risks encompass potential hazards such as work accidents, injuries, and security. Consequently, it is important to effectively manage these risks with equal emphasis on time and cost considerations during the project planning phase. Within the scope of this research, the grid and archive-based Grey Wolf Optimizer (GWO) algorithm was employed to investigate multi-objective time-cost-risk problems. By employing the GWO, multiple Pareto solutions were provided to the decisionmaker, facilitating improved decision-making. It was determined that the GWO algorithm yields better results in time-cost-risk problems compared to the Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.