Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 61

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  greenhouse
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
1
Content available Szklane domy – szkło w architekturze
PL
Szkło może wydawać się zarówno oczywistym, jak i nietuzinkowym materiałem architektonicznym. Przez swoją kruchość raczej nie jest elementem konstrukcyjnym, lecz przezierność i lekkość sprawiły, że architekci wielu epok z chęcią stosowali ten materiał w swoich projektach. Możliwości technologiczne przez stulecia ograniczały projektantów, lecz nie odbierały im fantazji ani rozmachu. Zarówno olbrzymie połacie szklanej mozaiki jak i barwne kobierce witraży zachwycają do dziś rozmiarami, na równi ze szklanymi dachami przełomu stuleci czy fasadami wieżowców. Szkło w architekturze jest obecne od setek lat i stanowi jej nieodłączny element, choć niejednokrotnie nie zdajemy sobie z tego sprawy
EN
Glass may seem to be both an obvious and unusual architectural material. Due to its fragility, it is rather not a structural element, but its translucency and lightness made architects of many eras eager to use this material in their projects. Technological possibilities for centuries limited the possibilities of designers but did not take away their imagination or momentum. Starting from the huge expanses of glass mosaic and colorful ornaments of stained glass windows, which still delight with their size, on a par with the glass roofs of the era of the industrial revolution or the facades of skyscrapers. Glass has been present in architecture for hundreds of years and is its inseparable element, although we often do not realize it.
EN
Ensuring the homogeneity of the indoor climate throughout the greenhouse is very important for uniform plant cultivation. In the study carried out to determine the indoor climate distribution in the heated greenhouse in the terrestrial climate, indoor temperature, relative humidity, dew point and vapour pressure deficit values were measured from 8 different measurement points. The distribution pattern of the measurement points was made horizontally and vertically at 2, 4 and 6 meters. Sensor placements are grouped vertically at 2 meters (G1: S1, S2 S3), at 4 meters (G2: S4, S5, S6) and at 6 meters (G3: S7, S8). Measurements taken during the day are divided into three parts. The climatic changes in the greenhouse were monitored as daily (00:00-23:30), daytime (08:30-17:30) and night (18:00-08:00) hours. According to the results obtained from the research, it was determined that the indoor climate parameters in the greenhouse change during the average daily, daytime and night hours at different times of the day and at different locations. According to this, it has been determined that it is important for better regulation of the greenhouse climate by monitoring the changes in the plant level as it rises from the greenhouse floor to the ridge with multiple sensors instead of a single sensor.
EN
Nowadays, applied computer-oriented and information digitalization technologies are developing very dynamically and are widely used in various industries. One of the highest priority sectors of the economy of Ukraine and other countries around the world, the needs of which require intensive implementation of high-performance information technologies, is agriculture. The purpose of the article is to synthesise scientific and practical provisions to improve the information technology of the comprehensive monitoring and control of microclimate in industrial greenhouses. The object of research is nonstationary processes of aggregation and transformation of measurement data on soil and climatic conditions of the greenhouse microclimate. The subject of research is methods and models of computer-oriented analysis of measurement data on the soil and climatic state of the greenhouse microclimate. The main scientific and practical effect of the article is the development of the theory of intelligent information technologies for monitoring and control of greenhouse microclimate through the development of methods and models of distributed aggregation and intellectualised transformation of measurement data based on fuzzy logic.
EN
Climate change is a global phenomenon impacting all countries. In order to mitigate against the impacts of climate change, it is necessary to take measures to minimise the impacts that will affect the human habitat especially the built environment in the future. In the light of the inequality of development over the world, including varying rates of economic growth, it will be difficult for developing countries to combat the effects of climate change due to the limited capital investment, varying levels of leadership and political commitment and technology levels. All the countries have to share responsibility for the historical and current global emissions of greenhouse gases originating from both developed and undeveloped countries. This studies the built environment and adapts the impacts to be increased in the climate change and this analysis the constraints the opportunities for managing impacts for human sustainability.
EN
Millions of tons of urban solid waste are discarded yearly in Mexico. The rapid population growth, urbanization, and social development, together with a more significant number of inhabitants, resulted in a massive amount of municipal solid waste (MSW) that is increasing yearly. Most of these end up in landfills without being used for energy, causing severe social and environmental problems. Municipal solid waste (MSW) is the most significant main waste stream (representing 9.21% of the waste that can be used), including plastic bottles, food dishes, cans, bags, and containers. The recycling and sustainable disposal of plastic waste is a significant activity with a high rate of complexity due to various effects that occur during its processes, such as obstructions in mechanisms and pipes, prolonged degradation and biodegradation rates, and the presence of additives, and highly toxic dyes. Pyrolysis is one of the promising technologies for converting waste into sound energy capable of being used in various applications such as power generation, transportation fuel, and multiple thermal purposes. According to the Ministry of Energy (SENER), Mexico has an installed generation capacity of 86,034 MW, of which almost 65% is based on fossil-based technologies.
EN
Greenhouses are artificial growing environments that can provide the growth factors required for the production of crop plants out of season. In these structures, the low temperature values that occur during the year cause losses in yield and quality because they are not suitable for plant cultivation. In order to be able to grow out of season in these periods, the amount of heat required by the plants should be provided with additional heating. In the study carried out to determine the amount of heat needed in greenhouses throughout the year for the provinces of Kırşehir and Kahramanmaraş, which are located in two different regions of Turkey, the heat requirements that will arise in the presence or absence of a thermal screen in greenhouses with the same characteristics were calculated. In the calculations, the most common tomato plant grown in both provinces has been considered. Accordingly, if the greenhouse temperature is kept at a constant temperature of 18°C throughout the year, the heat energy requirements that emerge during the year are 469.90 kWh m.-2 for Kırşehir and 254.71 kWh m.-2 for Kahramanmaraş. In the case of using a thermal screen, these values were calculated as 401.53 kWh m.-2 for Kırşehir province and 218.91 kWh m.-2 for Kahramanmaraş province. As a result of the study, the amount of heat energy needed in greenhouses in provinces decreased with the use of thermal screens. It has been determined that this situation is extremely important in terms of reducing the share of heating in production costs and the amount of carbon dioxide released into the atmosphere by fossil energy sources used for heating purposes.
7
Content available Skuteczność wentylacji naturalnej w szklarni
PL
W szklarniach w celu utrzymania właściwej temperatury wewnętrznej, w okresie występowania dużych wartości natężenia promieniowania słonecznego, stosuje się zabiegi cieniowania z użyciem ekranów termoizolacyjnych oraz wietrzenia. Badania przeprowadzono w szklarni jednonawowej w celu określenia skuteczności wentylacji naturalnej. Przedmiotem analiz jest szklarnia z zainstalowanym wewnątrz ekranem termoizolacyjnym. Badania przeprowadzono podczas dni letnich. Efektem analiz było określenie na podstawie pomiarów i analiz obliczeniowych strumienia powietrza wentylacyjnego przepływającego przez wietrzniki dachowe szklarni. Ustalono zależności strumienia powietrznego po stronie nawietrznej oraz zawietrznej od prędkości wiatru, a także różnicy temperatur wewnątrz i na zewnątrz szklarni. Na podstawie obliczeń wykonanych dla obserwacji podczas cieniowania powierzchni uprawnej oraz przy otwartych wietrznikach określono współczynniki wymiany powietrza na powierzchnię jednostkową szklarni. Ustalono, że przy prędkości wiatru przekraczającej 0,8 m/s współczynnik wymiany powietrza w badanej szklarni przekracza wartość zalecaną przez ASAE wynoszącą 0,04 m3/(sxm2).
EN
In greenhouses, in order to maintain proper indoor air temperature, during the period of high values of solar radiation intensity, shading treatments using thermal screens and ventilation are applied. The research was carried out in a mono-span greenhouse in order to determine the effectiveness of natural ventilation. The object of analysis is a greenhouse with a thermal screen installed inside. The tests were carried out during the summer days. The effect of the research was to determine the ventilation air flow through the vents of the greenhouse on the basis of measurements and calculation analyzes. The dependence of the air flow on the windward and leeward side was determined from the wind speed and the temperature difference between the indoor and outdoor air. On the basis of calculations made from observation during shading of the cultivated area and with open ventilators, the coefficients of air exchange per unit floor area of the greenhouse were determined. It was established that at a wind speed exceeding 0.8 m/s, the air exchange rate in the tested greenhouse exceeds the value recommended by the American Society of Agricultural Engineers of 0,04 m3/(sxm2).
EN
The use of low-temperature heat of industrial and natural origin for heating the soil in greenhouses allows practitioners to get very early vegetable and berry crops. The paper suggests a mathematical model of greenhouse heat exchange with a system of soil surface heating for substantiating the system structure and its efficiency in different conditions. The solution of the mathematical model was performed using the method of least squares in COMSOL Multiphysics software. The comparison of the results of experimental studies with the results of mathematical modelling revealed that the proposed mathematical model with a high degree of reliability allows predicting the thermal regime in greenhouses with surface soil heating using cover sleeves.
EN
The paper is an attempt to determine the impact of soil type and its selected technical parameters on the heat exchange with soil. The test results were based on the all-year-round experimental measurements of soil temperature and indoor and outdoor air in a greenhouse located in southern Poland. The field tests results were used to validate the calculation model using the WUFIplus software. The validation showed a high degree of conformity between the experiments and calculations. Five variants were used in the calculations, differentiated by technical parameters of the soil underneath the greenhouse. The results showed a significant impact of the soil type on the greenhouse energy management.
EN
In this study, it is aimed to determine the effect of greenhouse cover material of different color on the number of heating (HDHN) and cooling degree hours (CDHN) and heating (HDH) and cooling degree hours (CDH) of the lettuce plant. For this purpose, the study was carried out in the CtrlG (Control transparent PE greenhouse), RedG (Red PE greenhouse) and BlueG (Blue PE greenhouse). The study was completed in 2018 at ISUBU research and application farm. The temperature values measured in the three greenhouses with the same dimensions were the material of the study. HDH, CDH, HDHNs, and CDHNs were calculated by examining the measured temperature values and suggested temperature values for the lettuce plant. By using these values, it was tried to determine suitable cover material during the growing period of the lettuce plant. It has been concluded that the use of colored covering material is more suitable in terms of energy needs in almost all growing periods of lettuce plants. By comparing the values calculated for RedG and BlueG based on CtrlG, the coefficients of variation were calculated to determine which data series or series were more similar to each other. According to the coefficients of variation, the average values of HDH, CDH, HDHNs and CDHNs of the control greenhouse and other colored covered greenhouses ranged between 1,365 and 14,102%. Based on the CtrlG, BlueG was more homogeneous (1,365-8,364%), whereas RedG was less homogeneous (3,798-14,102%). It can be said that the use of colored covering material in greenhouses for lettuce plants will be more advantageous in terms of energy requirement.
EN
This thesis was carried out in four greenhouses with arc roofs with a base area of 6 m2 and a side height of 2 m in the experimental area of Isparta University of Applied Sciences, Agricultural Research and Application Center. For this purpose, greenhouse with LED lighting (LED), Red-colored (RG) greenhouse, Blue-colored greenhouse (BG) and greenhouses with transparent covering material (TrG) were used as materials. The study was conducted between February and May 2019. In this study, the effects of different color cover material on the development parameters of radish were determined by measuring the temperature, humidity and solar energy values of the greenhouse. In order to do these measurements, sensors are placed in the greenhouses. Solar energy measurements were taken between 10:00-16:00 hours considering sunshine time. Temperature and humidity measurements were recorded for 24 hours. When the values obtained from TrG, BG, RG and LED greenhouses were examined, it was determined that the highest temperature value of the radish plant in the LED greenhouse during the growing period. Average greenhouse indoor temperature values were found to be between 13°C and 16°C in LED greenhouse, between 6.5°C and 15o C in COG, between 6o C and 14o C in BG and between 6.5°C and 12.2°C in RG. Solar energy values are between 26 and 1053 Wm-2 in LED greenhouse, 21.1 and 856.6 Wm-2 in TrG, 17.9-680.3 Wm-2 in BG and 14.3-633.1 Wm-2 in RG has been determined. In order to examine the growth parameters of radish plant, root weight, height, stem length, length of green parts and root diameter were examined. Root weight was higher in LED greenhouse, plant root length and length of green parts were higher in RG, plant root diameter and weight of green parts were higher in TrG. As a result, it was concluded that the development of radish plant is the worst in the BG in terms of both temperature and radiation energy values. In particular, it was determined that the radish plant in BG appears to be different from the other greenhouse plants. When the development of radish is taken into consideration in four greenhouses, it is concluded that TrG can be recommended for plant root weight, root diameter and green component weight and RG can be recommended for height and stem length. When the developments in the BG were considered, it was concluded that the application of blue color is not suitable for the cultivation of radish.
EN
The aim of this study is to determine the effects of insect net placed on ventilation openings in greenhouses on temperature, humidity and radiation energy from indoor conditions. In addition, the effects of insect net on the agents used in biological control have been tried to be determined. The study was carried out between November 2017 and May 2018 in Kumluca district of Antalya in 2 glass and 2 plastic greenhouses. Greenhouses; the glass greenhouse without insect net (GCG), the glass greenhouse with insect net (GNG), the plastic greenhouse without insect net (PCG), the plastic greenhouse with insect net (PNG) is named as. Temperature, humidity and solar radiation values were measured in greenhouses. According to the results of the research; It was determined that the recommended temperature values for pepper development are only suitable in January and well below the recommended values in February. In other production months, the average temperature values of with insect net greenhouses (PNG-GNG) used in ventilation openings were found to be higher than without insect net greenhouses (PCG-GCG). When the results of relative humidity values were examined, it was observed that the use of insect tulle in the greenhouses was lower than the control greenhouses. It was determined that the solar radiation values were lower than the control greenhouses (PCG-GCG) of the insect tulle greenhouses (PNGGNG) in other months except January and May. Therefore, we can say that the use of insect net reduces the amount of solar radiation. Accord ing to the results of temperature values; the growth of Orius Leavigatus and Amblyseius swirski, one of the biological agents and resistant to high temperatures, was observed to slow down in all other months except February. For Phytoseiulus persimilis (30°C and above), we can say that this is a suitable environment and that the eggs have emerged in a shorter time. The most suitable average temperature for the development of Aphidius colemani was reached only in January. In other months, the development of this agent slows down, parasitic insecticides can be said to decrease the rate of parasitoids. As a result; It was determined that the temperature values were higher in the greenhouses where insect net was used and the solar radiation values were lower than the control greenhouses. However, since the use of insect net causes the temperature in the greenhouse to increase, it may create a positive development for some bio agents. It is thought that producers using insect net should make production considering these negativities in temperature and solar radiation.
EN
The process of composting biological waste is a natural process - in which heat is released. Biological wastes generated in typical households in Poland - are mainly kitchen waste (KW) and green waste from home gardens (GGW - if they are owned). From the ecological point of view - the most advantageous method of their management is their utilization in the place of production. The paper presents a proposal for effective management of bio-waste arising by composting - with the simultaneous use of heat for greenhouse heating in autumn. This is to encourage residents to independently compost bio-waste - and increase the level of recycling of waste generated in Poland by 2020. Calculations for greenhouses were made - in accordance with the energy audit methodology. The obtained thermal balance results were compared with the actual temperature prevailing in the greenhouse in autumn. These calculations were the basis for calculating the amount of KW and GGW enabling effective heating of greenhouses in the autumn so that the internal temperature does not drop below 10ºC. It has been calculated that 22 kg of composted bio-waste (KW and GGW) will suffice to heat the greenhouse in October with an area of 18 m2.
PL
Proces kompostowania odpadów biologicznych jest procesem naturalnym - w którym wydzielane jest ciepło. Odpady biologiczne powstające w typowych gospodarstwach domowych w Polsce - to przede wszystkim odpady kuchenne (Kitchen Waste) i odpady zielone z przydomowych ogródków (GGW - w przypadku ich posiadania). Z punktu widzenia ekologicznego - najkorzystniejszą metodą ich zagospodarowania jest ich utylizacja w miejscu powstawania. W pracy pokazano propozycję efektywnego zagospodarowania powstających bioodpadów poprzez ich kompostowanie - z jednoczesnym wykorzystaniem ciepła do ogrzewania szklarni jesienią. Ma to zachęcić mieszkań- ców do samodzielnego kompostowania bioodpadów - i zwiększyć wymagany do 2020 roku poziom recyklingu powstających w Polsce odpadów. Wykonano obliczenia dla szklarni - zgodnie z metodyką audytu energetycznego. Uzyskane wyniki bilansu cieplnego porównano z rzeczywistymi temperaturami panującymi w szklarni jesienią. Obliczenia te były podstawą do obliczenia ilości KW i GGW umożliwiającej efektywne dogrzanie szklarni jesienią tak - aby temperatura wewnątrz nie spadła poniżej 10ºC. Wyliczono, że 22 kg kompostowanych bioodpadów (KW i GGW) wystarczą do dogrzania szklarni w październiku o powierzchni 18 m2.
EN
In this study, the heating and cooling conditions of the greenhouses in Antalya were examined and suggestions were made for solutions of the problems that emerged. The Simple Random Sampling Method was used in determining the number of enterprises to be surveyed. The number of enterprises to be surveyed was determined as 246 with a 90 % confidence limit and 10 % error rate. It was determined that the greenhouses enterprises surveyed were heating at 96.34%. It has been determined that the most commonly preferred type of heater in the region is the stove and that the stove is heated only to protect the product from frost damage. In accordance with the data obtained from the research area, it was determined that one stove was used for 1000 m2 greenhouse floor area. It has been determined that 92.68% of the surveyed greenhouse enterprises are trying to reduce the excess temperature inside greenhouse by natural ventilation. It was determined that both the sidewall and roof ventilation were made at 45.93% of the greenhouse enterprises where examined in the research area. It has been determined that the ratio of ventilation area to greenhouse floor area changes between 10 and 15 in 32.52% of greenhouse enterprises and this ratio changes between 15 and 20 in 41.46%. As a result, the heating and cooling properties and problems encountered of the greenhouse enterprises in the study area were determined and necessary precautions to be taken.
PL
Celem pracy była ocena nawodnienia kroplowego w uprawie pomidora, prowadzonego w szklarniach jako najbardziej ekonomicznego i powszechnie stosowanego systemu nawodnień. Obiektem badań było gospodarstwo ogrodnicze o powierzchni 2 ha, położone 20 km od Kalisza w miejscowości Szczytniki. W gospodarstwie zastosowano nawadnianie kroplowe uprawy pomidora w ilości 50000 roślin. Wybrany sposób nawadniania spowodował skrócenie czasu pracy, zmniejszenie nakładów na jednostkę produkcji oraz wzrost wydajności pracy. Uprawa pomidora odbywała się na wełnie mineralnej, dlatego niezbędne stało się systematyczne nawadnianie powiązane z dozowaniem roztworów, w których zawartość składników pokarmowych wymaga dostosowania do określonej fazy wzrostu rośliny z uwzględnieniem indywidualnych wymagań odmiany.
EN
Aim of this study was to evaluate the drip irrigation based on tomato crops in greenhouses carried out as the most economical and widely used irrigation system. The object of the study was a horticultural farm with an area of 2 hectares, which is located 20 km from Kalisz town, close to Szczytniki village, near the Kalisz - Łódź route. A drip irrigation system intended to irrigate 50,000 plants is used in the farm. This system is the best tomato irrigation system currently available on the market. It reduces the operating time resulting in reduction of expenditures per unit of output and labour productivity growth. On the farm tomato cultivation is carried out on mineral wool, which makes necessity of systematically irrigation associated with dispensing solutions, where the nutrient content needs to be adapted to a particular stage of the crop, considering individual needs variety.
PL
W artykule przedstawiono wyniki badań wykonanych w całorocznie eksploatowanej szklarni, których celem była analiza efektywności energetycznej oraz w rezultacie ustalenie zapotrzebowania na nieodnawialną energię pierwotną i wielkości emisji dwutlenku węgla do atmosfery. Badania przeprowadzono w szklarni z ekranem termoizolacyjnym, który w okresie nocnym w znaczący sposób ogranicza straty ciepła. W badaniach określono ilość energii użytecznej, końcowej i pierwotnej jaką zużywa typowy obiekt szklarniowy eksploatowany całorocznie w Polsce centralnej. W efekcie końcowym ustalono z jak dużą emisją dwutlenku węgla mamy do czynienia, gdy paliwem jest miał węglowy.
EN
This paper presents results of research conducted in an all-year-round operated greenhouse. It aimed at analyzing its energy efficiency and, as a consequence, calculating its demand for non-renewable primary energy as well as the amount of the emission of carbon dioxide. The greenhouse had a thermal screen installed in order to reasonably reduce the loss of heat at night. As a result, it has been determined how much of the useful energy, final energy and primary energy is consumed yearly by a typical greenhouse, placed in central Poland. It has also been found out how much carbon dioxide is likely to be emitted to the atmosphere providing that fine coal is the fuel.
PL
Krótkoterminowe prognozy zapotrzebowania na ciepło dają możliwość zwiększenia wydajności produkcji ciepła, zmniejszenia zużycia paliwa i emisji produktów spalania do atmosfery. W artykule przedstawiono problem dokładności prognozowania zapotrzebowania na ciepło w szklarni z wykorzystaniem metod SARIMA. Źródłem informacji do analizy szeregów czasowych były dane eksploatacyjne zużycia ciepła.
EN
Short-term heat demand predictions give possibility for increasing efficiency of heat production, reduce fuel consumption and connected with it emission decreasing from combustion products to the atmosphere. The paper presents a problem precision of forecasting heat demand in a greenhouse building using SARIMA methods. Information source for the analysis of time series were operating data of energy consumption.
PL
W pracy przedstawiono wyniki badań i analiz zużycia energii w wolnostojącej szklarni z ekranem termoizolacyjnym. Celem tych badań była analiza zmienności obciążenia cieplnego w szklarni z ruchomym ekranem termoizolacyjnym. Analizy wykonano w oparciu o pomiary parametrów klimatu, mikroklimatu szklarni, zużycia energii oraz parametrów opisujących funkcjonowanie wyposażenia technicznego szklarni. Według analiz średni miesięczny współczynnik obciążenia zawiera się w zakresie od 9% do 69%. Przedstawiono miesięczną i dobową strukturę zużycia energii w badanej szklarni z ekranem i bez ekranu. W analizach zmienności obciążenia cieplnego systemu grzewczego szklarni z ekranem termoizolacyjnym zaleca się korzystać z danych zużycia energii lub zapotrzebowania na ciepło.
EN
This paper presents results of investigation of the free-standing greenhouse with movable thermal screen inside. Energy consumption by the modern greenhouse object is analyzed, basing on the in-situ measurements. The aim of these investigation was analysis variability of heating load in greenhouse with thermal screen. The analysis was based on the registration of the external climate parameters, greenhouse microclimate, energy consumption and parameters describing the functioning of the technical equipment of greenhouse. The computations show that the mean monthly Load Factor is in the range from 9% in June to 69% in January. Shows the structure of energy consumption per month with regard to the functioning of the greenhouse with and without a thermal screen as well as its profile changes in cross daily. In analyzes of variability heating load in greenhouse with additional cover it is recommended to use the data about energy consumption or heat demand.
PL
Sposób kształtowania struktur szklarniowych w układzie przylegającym reprezentuje koncepcję przegrody energetycznej, wdrażającej wszelkie rozwiązania innowacyjne uwzględniające pasywny system samoregulacji ciepła, ochrony przeciwsłonecznej, naturalnej wymiany powietrza w zależności od stopnia nasłonecznienia a zarazem zorientowania wobec kierunków stron świata. Warunki te determinują charakter przestrzeni szklarniowej dodanej do budynku po stronie nasłonecznionej, scharakteryzowanej, jako pasywny kolektor ciepła lub po stronie o ograniczonej insolacji, jako bufor termiczny. Dodana struktura szklarniowa poddana insolacji warunkuje zyski cieplne z promieniowania słonecznego zimą zmagazynowane w elementach konstrukcyjnych a zamknięta przestrzeń międzypowłokowa pełni rolę bufora cieplnego w tym okresie. Latem poddana jest strategii chłodzenia, polegającej na pozbyciu się nadmiaru ciepła z obiektu wskutek właściwej dystrybucji powietrza wentylowanego i ochronie przeciwsłonecznej. Wydzielona przestrzeń szklarniowa, tworząca obrzeżną strefę budynku przyczynia się do ograniczenia zapotrzebowania na energię i pełni rolę modyfikatora mikroklimatu wnętrza. Przedstawione zostały przylegające struktury szklarniowe w układzie pionowym szklenia oraz arkady słonecznej, na długości nasłonecznionej elewacji, które najpełniej dostosowane są do wykorzystania energii z promieniowania słonecznego. Przykłady zrealizowanych obiektów o określonych wyżej uformowaniach struktur szklarniowych stały się bazą analiz energetycznych w formie schematów, obrazujących zależności między strukturą budynku a gospodarowaniem energią w systemach pasywnego jej pozyskiwania. Artykuł podkreśla korzyści energetyczne płynące z zastosowania dodanych struktur przeszklonych do budynku wynikające z jego uformowania w warunkach klimatu umiarkowanego.
EN
The proposed method of designing and shaping of the greenhouse structures adjacent to a building represents a concept of energy barrier taking advantage of every innovative approach including the passive system of self-regulation of heat, sun protection, and natural air exchange dependent on sun exposure as well as matching the current Earth position. The discussed conditions determined the character of greenhouse space added to the buildings on the sunny side characterized as a passive collector of heat or on the other side with limited insolation as energy barrier. The added greenhouse structure exposed to insolation yields heat gains from sun radiation during the winter and stores the energy in the construction elements while the sealed glazed structures act as thermal barrier. During summer the entire concept is reversed and the heat excess is removed from the building by combination of proper ventilation and sun protection techniques resulting in lowering building temperature. The greenhouse structure, which surrounds a building lowers the demand for energy and acts as modifier of the interior microclimate. The presented adjacent greenhouse structures were introduced with a perpendicular glass arrangement together with the sunny arcade along the space of the sunny elevation, which is the best way for sun radiation energy utilization. The examples of the buildings modified accordingly to the above-presented scenario became the basis for the heat balance analysis in the form of charts showing the relationship between the greenhouse structures and the passive energy systems. The presented paper stresses energy benefits from the use of the added glass glazed structures under the condition of the moderate climate.
EN
The paper presents results of calculations conducted on a change of demand for thermal power in a greenhouse covered with standard garden glass and a low-emission glass. Changes of heat demand were also determined. Changes of the amount of fuel (fine coal size grade) as well as changes in the emission of pollutants to the atmosphere were estimated based on calculations. It was determined that covering a greenhouse with low-emission glass has a positive impact on decreasing heat demand.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.