Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  gray level co-occurrence matrix
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: Parkinson’s disease (PD) detection holds great potential for providing effective treatments, slowing the disease process, and improving the quality of patient’s life, but the development of a clinical accurate, generalized, robust and cost-effective method is a challenge. Method: In this paper, a novel PD detection method based on textural features of clinical electroencephalogram (EEG) signals has been proposed. In contrast to most existing methods, which do not consider reward positivity (RP)-relevant features for automatic PD detection, this method has focused on providing a novel EEG marker of RP using an enhanced time-frequency representation, texture descriptors based on Gray Level Co-occurrence Matrix, local binary pattern, and sparse coding classifier. Results: The proposed method has been evaluated using EEG signals recorded during a reinforcement-learning task from 28 patients with PD and 28 sex- and age matched healthy controls. Results have demonstrated that the proposed architecture reaches a high detection with an average accuracy rate of 100%, presenting better performance and outperforming previous techniques. Conclusions: it can provide a new solution to detect RP changes in PD and can offer obvious stability advantages on several clinical and technical variables (medication states, type of textural descriptors, reduced channels), suggesting a generalizable detection system.
EN
Epilepsy is a brain disorder that many persons of different ages in the world suffer from it. According to the world health organization, epilepsy is characterized by repetitive seizures and more electrical discharge in a group of brain neurons results in sudden physical actions. The aim of this paper is to introduce a new method to classify epileptic phases based on Fourier synchro-squeezed transform (FSST) of electroencephalogram (EEG) signals. FSST is a time-frequency (TF) analysis and provides sharper TF estimates than the conventional short-time Fourier transform (STFT). Absolute of FSST of EEG signal is computed and segmented into five non-overlapping frequency sub-bands as delta (d), theta (u), alpha (a), beta (b), and gamma (g). Each sub-band is considered as a gray-scale image and then we propose to obtain the gray-level co-occurrence matrix (GLCM) of each sub-band as features. We concatenate the features of different sub-bands to obtain the final feature vector. After selecting informative features by infinite latent feature selection (ILFS) method, the support vector machine (SVM) and K-nearest neighbor (KNN) classifiers are used separately to classify EEG signals. We use the EEG signals from Bonn University database and different combinations of its sets are considered. Simulation results show that the proposed method efficiently classifies the EEG signals and can be used to determine the phase of epilepsy.
EN
The present work proposes a classification framework for the prediction of breast density using an ensemble of neural network classifiers. Expert radiologists, visualize the textural characteristics of center region of a breast to distinguish between different breast density classes. Accordingly, ROIs of fixed size are cropped from the center location of the breast tissue and GLCM mean features are computed for each ROI by varying interpixel distance 'd' from 1 to 15. The proposed classification framework consists of two stages, (a) first stage: this stage consists of a single 4-class neural network classifier NN0 (B-I/B-II/B-III/B-IV) which yields the output probability vector [PB-I PB-II PB-III PB-IV] indicating the probability values with which a test ROI belongs to a particular breast density class. (b) second stage: this stage consists of an ensemble of six binary neural network classifiers NN1 (B-I/B-II), NN2 (B-I/B-III), NN3 (B-I/B-IV), NN4 (B-II/B-III), NN5 (B-II/B-IV) and NN6 (B-III/B-IV). The output of the first stage of the classification framework, i.e. output on NN0 is used to obtain the two most probable classes for a test ROI. In the second stage this test ROI is passed through one of the binary neural networks, i.e. NN1 to NN6 corresponding to the two most probable classes predicted by NN0. [...]
EN
This study presents a computer-aided diagnostic system for hierarchical classification of normal, fatty, and heterogeneous liver ultrasound images using feature fusion techniques. Both spatial and transform domain based features are used in the classification, since they have positive effects on the classification accuracy. After extracting gray level co-occurrence matrix and completed local binary pattern features as spatial domain features and a number of statistical features of 2-D wavelet packet transform sub-images and 2-D Gabor filter banks transformed images as transform domain features, particle swarm optimization algorithm is used to select dominant features of the parallel and serial fused feature spaces. Classification is performed in two steps: First, focal livers are classified from the diffused ones and second, normal livers are distinguished from the fatty ones. For the used database, the maximum classification accuracy of 100% and 98.86% is achieved by serial and parallel feature fusion modes, respectively, using leave-one-out cross validation (LOOCV) method and support vector machine (SVM) classifier.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.