Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  graph reduction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Reduced-by-matching Graphs: Toward Simplifying Hamiltonian Circuit Problem
EN
The results presented in the paper are threefold. Firstly, a new class of reduced-by-matching directed graphs is defined and its properties studied. The graphs are output from the algorithm which, for a given 1-graph, removes arcs which are unnecessary from the point of view of searching for a Hamiltonian circuit. In the best case, the graph is reduced to a quasi-adjoint graph, what results in polynomial-time solution of the Hamiltonian circuit problem. Secondly, the systematization of several classes of digraphs, known from the literature and referring to directed line graphs, is provided together with the proof of its correctness. Finally, computational experiments are presented in order to verify the effectiveness of the reduction algorithm.
2
Content available remote Control flow graphs and code coverage
EN
The control flow of programs can be represented by directed graphs. In this paper we provide a uniform and detailed formal basis for control flow graphs combining known definitions and results with new aspects. Two graph reductions are defined using only syntactical information about the graphs, but no semantical information about the represented programs. We prove some properties of reduced graphs and also about the paths in reduced graphs. Based on graphs, we define statement coverage and branch coverage such that coverage notions correspond to node coverage, and edge coverage, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.