Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  graph labeling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Edge product cordial labeling of some graphs
EN
For a graph G = (V(G),E(G)) having no isolated vertex, a function ƒ : E(G)→{0;1} is called an edge product cordial labeling of graph G, if the induced vertex labeling function defined by the product of labels of incident edges to each vertex be such that the number of edges with label 0 and the number of edges with label 1 differ by at the most 1 and the number of vertices with label 0 and the number of vertices with label 1 also differ by at the most 1. In this paper we discuss the edge product cordial labeling of the graphs Wn(t), PSn and DPSn.
2
Content available Decomposition of complete graphs into small graphs
EN
In 1967, A. Rosa proved that if a bipartite graph G with n edges has an α-labeling, then for any positive integer p the complete graph K(2np+1) can be cyclically decomposed into copies of G. This has become a part of graph theory folklore since then. In this note we prove a generalization of this result. We show that every bipartite graph H which decomposes K(k) and K(m) also decomposes K(km).
3
Content available α2-labeling of graphs
EN
We show that if a graph G on n edges allows certain special type of rosy labeling (a.k.a. rho;-labeling), called α2-labeling, then for any positive integer k the complete graph K2nk+1 can be decomposed into copies of G. This notion generalizes the α-labeling introduced in 1967 by A. Rosa.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.