Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  graph Laplacian
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Frames and factorization of graph Laplacians
EN
Using functions from electrical networks (graphs with resistors assigned to edges), we prove existence (with explicit formulas) of a canonical Parseval frame in the energy Hilbert space [formula] of a prescribed infinite (or finite) network. Outside degenerate cases, our Parseval frame is not an orthonormal basis. We apply our frame to prove a number of explicit results: With our Parseval frame and related closable operators in [formula] we characterize the Priedrichs extension of the [formula]-graph Laplacian. We consider infinite connected network-graphs G = (V, E), V for vertices, and E for edges. To every conductance function c on the edges E of G, there is an associated pair [formula] where [formula] in an energy Hilbert space, and Δ (=Δc) is the c-graph Laplacian; both depending on the choice of conductance function c. When a conductance function is given, there is a current-induced orientation on the set of edges and an associated natural Parseval frame in [formula] consisting of dipoles. Now Δ is a well-defined semibounded Hermitian operator in both of the Hilbert [formula] and [formula]. It is known to automatically be essentially selfadjoint as an [formula]-operator, but generally not as an [formula] operator. Hence as an [formula] operator it has a Friedrichs extension. In this paper we offer two results for the Priedrichs extension: a characterization and a factorization. The latter is via [formula].
EN
In order to describe the interconnection among agents with multi-dimensional states, we generalize the notion of a graph Laplacian by extending the adjacency weights (or weighted interconnection coefficients) from scalars to matrices. More precisely, we use positive definite matrices to denote full multi-dimensional interconnections, while using nonnegative definite matrices to denote partial multi-dimensional interconnections. We prove that the generalized graph Laplacian inherits the spectral properties of the graph Laplacian. As an application, we use the generalized graph Laplacian to establish a distributed consensus algorithm for agents described by multi-dimensional integrators.
3
EN
In this paper, we study a consensus problem in multi-agent systems, where the entire system is decentralized in the sense that each agent can only obtain information (states or outputs) from its neighbor agents. The existing design methods found in the literature are mostly based on a graph Laplacian of the graph which describes the interconnection structure among the agents, and such methods cannot deal with complicated control specification. For this purpose, we propose to reduce the consensus problem at hand to the solving of a strict matrix inequality with respect to a Lyapunov matrix and a controller gain matrix, and we propose two algorithms for solving the matrix inequality. It turns out that this method includes the existing Laplacian based method as a special case and can deal with various additional control requirements such as the convergence rate and actuator constraints.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.