Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  granulki informacji
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The methods of Computational Intelligence (CI) including a framework of Granular Computing, open promising research avenues in the realm of processing, analysis and interpretation of biomedical signals. Similarly, they augment the existing plethora of "classic" techniques of signal processing. CI comes as a highly synergistic environment in which learning abilities, knowledge representation, and global optimization mechanisms and this essential feature is of paramount interest when processing biomedical signals. We discuss the main technologies of Computational Intelligence (namely, neural networks, fuzzy sets, and evolutionary optimization), identify their focal points and elaborate on possible limitations, and stress an overall synergistic character, which ultimately gives rise to the highly symbiotic CI environment. The direct impact of the CI technology on ECG signal processing and classification is studied with a discussion on the main directions present in the literature. The design of information granules is elaborated on; their design realized on a basis of numeric data as well as pieces of domain knowledge is considered. Examples of the CI-based ECG signal processing problems are presented. We show how the concepts and algorithms of CI augment the existing classification methods used so far in the domain of ECG signal processing. A detailed construction of granular prototypes of ECG signals being more in rapport with the diversity of signals analyzed is discussed as well. ECG signals, Computational Intelligence, neurocomputing, fuzzy sets, information granules, Granular Computing, interpretation, classification, interpretability.
2
EN
Computational Intelligence has emerged as a synergistic environment of Granular Computing (including fuzzy sets, rough sets, interval analysis), neural networks and evolutionary optimisation. This symbiotic framework addresses the needs of system modelling with regard to its transparency, accuracy and user friendliness. This becomes of paramount interest in various modelling in bioinformatics especially when we are concerned with decision-making processes. The objective of this study is to elaborate on the two essential features of CI that is Granular Computing and the resulting aspects of logic-oriented processing and its transparency. As the name stipulates, Granular Computing is concerned with processing carried out at a level of coherent conceptual entities - information granules. Such granules are viewed as inherently conceptual entities formed at some level of abstraction whose processing is rooted in the language of logic (especially, many valued or fuzzy logic). The logic facet of processing is cast in the realm of fuzzy logic and fuzzy sets that construct a consistent processing background necessary for operating on information granules. Several main categories of logic processing units (logic neurons) are discussed that support aggregative (and-like and or-like operators) and referential logic mechanisms (dominance, inclusion, and matching). We show how the logic neurons contribute to high functional transparency of granular processing, help capture prior domain knowledge and give rise to a diversity of the resulting models.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.