A proper graded ideal P of a commutative graded ring R is called graded weakly 1-absorbing primary if whenever x, y, z are nonunit homogeneous elements of R with 0≠xyz ∈ P , then either xy ∈ P or z is in the graded radical of P. In this article, we explore more results on graded weakly 1-absorbing primary ideals.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G be a group and R be a G-graded commutative ring with nonzero unity 1. In this article, we introduce the concept of graded weakly 1-absorbing primary ideals which is a generalization of graded 1-absorbing primary ideal. A proper graded ideal P of R is said to be a graded weakly 1-absorbing primary ideal of R if whenever nonunit elements x y z ∈ h(R), , such that 0 ≠ ∈ xyz ∈ P, then xy ∈ P or zn ∈ P , for some n ∈ N . Several properties of graded weakly 1-absorbing primary ideals are investigated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.