Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  goetechnika
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W związku z przewidywanym wzrostem zapotrzebowania na gaz w Europie i w Polsce do 2020 roku, a także zamierzoną likwidacją niektórych kopalń węgla w Górnośląskim Zagłębiu Węglowym - rozpatruje się możliwość wykorzystania wyrobisk niektórych z nich na podziemne magazyny gazu. Pozytywne doświadczenia w tym zakresie uzyskano w Belgii (byłe kopalnie Anderlues oraz Peronnes-lez-Binche), a także USA (kopalnia Leyden k. Denver), gdzie - po adaptacji - kopalnie węgla służą przez wiele lat jako magazyny gazu energetycznego dla pobliskich aglomeracji miejskich. Doświadczenia zdobyte podczas budowy zbiorników gazu w tych kopalniach wskazują, że ważną rolę w powodzeniu tego rodzaju przedsięwzięcia odgrywają następujące czynniki geotechniczne: istnienie nieprzepuszczalnego nadkładu, zapobiegającego ucieczkom gazu ku powierzchni, oddalenie kopalni od kopalń sąsiednich - co zapobiega ucieczkom gazu w kierunku poziomym, nieznaczne dopływy wód podziemnych do kopalni - ze względu na oszczędność kosztów stałego odpompowywania wody ze zbiornika, kontrolowane zasięgi strefy spękania skał nad wyeksploatowanymi pokładami węgla, znaczne ilości węgla pozostawionego w złożu (filary, zroby) - co zwiększa pojemność gazową zbiornika ze względu na znaczną sorbowalność metanu przez węgiel, a także obecność w sąsiedztwie wyrobisk porowatych formacji skalnych - co zwiększa elastyczność zbiornika przez oddziaływanie na gaz ciśnienia wód podziemnych. Wszystkie wymienione czynniki zależą w znacznej mierze od właściwości geotechnicznych górotworu otaczającego wyrobiska takich, jak: wytrzymałość i odkształcalność górotworu otaczającego zbiornik, szczelinowatość skał i drożność gazowa szczelin, a także rozmakalność i porowatość skał. Cechy te mogą być określane metodami laboratoryjnymi lub polowymi, znanymi z zastosowań w geomechanice górniczej oraz budownictwie wodnym i tunelowym. W artykule omówiono szczegółowo następujące metody badań przydatne przy rozpoznawaniu przydatności danej kopalni na podziemny zbiornik gazu oraz projektowaniu i wykonawstwie zbiornika: - badanie wytrzymałości skał na ściskanie (w laboratorium), - badanie odkształcalności skał (modułów odkształcenia i sprężystości) w laboratorium, - badanie rozmakalności skał (przy zanurzeniu jednorazowym oraz wielokrotnym), - analizę kierunków i zagęszczenia szczelin w górotworze, - badanie drożności gazowej szczelin metodą aerometryczną, - badanie polowe odkształcalności górotworu w układzie płaskim, - badanie polowe odkształcalności górotworu w układzie radialnym oraz sposób uwzględniania wpływu czynnika skali wielkości na parametry geotechniczne skał i górotwo-ru. Omówiono także krajowe doświadczenia z prac adaptacyjnych części wyrobisk byłej kopalni węgla "Nowa Ruda" (pole "Słupiec") na podziemny magazyn gazu oraz wynikające z tych doświadczeń wnioski. We wnioskach podkreślono, że wymienione powyżej (i omówione w artykule) metody badawcze mogą być przydatne przede wszystkim przy projektowaniu wysokociśnieniowych podziem-nych zbiorników gazu i paliw płynnych, natomiast przy rozpatrywaniu możliwości budowy niskociśnieniowego zbiornika gazu w wyrobiskach likwidowanej kopalni węgla pierwszorzędne znaczenie mają czynniki makrogeotechniczne takie, jak: właściwości nieprzepuszczalnego nadkładu, stosunki hydrogeologiczne i dopływy wody do wyrobisk, tektonika złoża w aspekcie ewentualnych połączeń z sąsiednimi kopalniami lub powierzchnią, łączna objętość pustek (wyrobisk) oraz zrobów pozostawionych w kopalni, masa węgla pozostawionego w złożu i jego właściwości sorpcyjne (oraz szybkość desorpcji), możliwości oraz spodziewane koszty likwidacji wszystkich szybów i otworów wiertniczych z powierzchni, a także obecność w sąsiedztwie wyrobisk wodonośnych skał porowatych. Niezależnie od zagadnień geotechnicznych, ważnym czynnikiem warunkującym powodzenie przedsięwzięcia jest bezpośrednie zaangażowanie w proces projektowania i budowy zbiornika jego przyszłego właściciela i użytkownika.
EN
In connection with expected growth of gas consumption both in Europe and in Poland up to the year 2020, as well as closing foreseen of several coal mines in Upper Silesian Coal Basin - it is considered to utilize underground openings of some of these mines as UGSFs. Successful experiences in this area are known from Belgium (former coal mines Anderlues and Peronnes-lez-Binche) and the USA (mine Leyden near Denver), where - after adaptation works - these mines are used since many years as the UGSFs, serving local municipal agglomerations. Experience coming from adaptation of these mines into gas storage facilities show the importance of such geotechnical factors as existence of non-permeable overburden which prevents leaking of gas to the surface, far distance from adjacent mines (if they exist) - which prevents horizontal leakages, limited water inflow to the mine - to constrain the costs of permanent water pumping, controlled vertical range of roof failure over coal seams mined, volume and methane sorption/desorption capacity of coal left in a mine (pillars, goabs) - to increase storage volume and porosity of rocks surrounding excavations - which decides about flexibility of a reservoir. All elements mentioned depend on geotechnical features of rock masses surrounding excavations such as the strength and deformability, jointing of rocks and gas conductivity through fractures as well as slakeability and porosity of rocks. These properties may be investigated with both laboratory and field methods known from mining geomechanics practice as well as hydro-engineering and tunneling. Following methods applicable in assessing of coal mine usefulness as a potential UGSF and designing process, are discussed in a paper: - uniaxial compressive strength test of rock in the laboratory, - deformability of rock (moduli of elasticity and deformation) in the laboratory, - slakeability of rocks (both in single and multiple submerging), - rock jointing analysis (both directions and density of joints), - gas conductivity of fractures tested with an aerometric probe, - field testing of deformability of rock mass in a flat system, - field testing of deformability of rock mass in a radial system, as well as the role of scale effect on geotechnical parameters of rocks and rock masses. The Polish experiences were also discussed coming from adaptation works of part of former Nowa Ruda coal mine (section Słupiec) into UGSF and conclusions are drawn from these experiences. In final conclusions it was pointed out that methods mentioned above and described in a paper are useful primarily in designing high pressure reservoirs while with low pressure ones macro-geotechnical features of rock masses seem to be of prime significance, such as properties of non-permeable overburden, hydrogeological relations and water inflow to the mine, tectonics and its linkage aspect to adjacent mines and to the surface, masses of coal left in a mine, its sorption capacity and desorption rate, costs expected of shafts closure and old boreholes sealing as well as porous aquifiers presence close to the openings. Apart from geotechnical problems a direct engagement in mine transforming into UGSF of its future owner or/and operator is considered to be very important condition for the success of the enterprise.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.