Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  glowworm swarm optimization algorithm
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
EEG-based emotion classification is considered to separate and observe the mental state or emotions. Emotion classification using EEG is used for medical, security and other purposes. Several deep learning and machine learning strategies are employed to classify the EEG emotion signals. They do not provide sufficient accuracy and have higher complexity and high error rate. In this manuscript, a novel Reinforced Spatio-Temporal Attentive Graph Neural Networks (RSTAGNN) and ContextNet for emotion classification with EEG signals is proposed (RSTAGNN-ContextNet-GWOA-EEG-EA). Here, the input EEG signals are taken from two benchmark datasets,namely DEAP and K-EmoCon datasets. Then, the input EEG signals are pre-processed,and the fea- tures are extracted utilizing ContextNet with Global Principal Component Analysis (GPCA). After that, the EEG signal emotions are classified using Reinforced Spatio- Temporal Attentive Graph Neural Networks method. RSTAGNN weight parameters are optimized under the Glowworm Swarm Optimization Algorithm (GWOA). The proposed model classifies the EEG signal emotions with high accuracy. The efficacy of the proposed method using the DEAP dataset attains higher accuracy by 24.05%, 12.64% related to existing systems, like Multi-domain feature fusion for emotion classification (DWT-SVM-EEG- EA-DEAP), EEG emotion finding utilizing fusion mode of graph CNN with LSTM (GCNN-LSTM-EEG-EA-DEAP) respectively. The efficiency of the proposed method using the K-EmoCon dataset attains higher accuracy 32.64%, 15.65% related to existing systems, like Toward Robust Wearable Emotion Realization along Contrastive Repre- sentation Learning (CAT-EEG-EA-K-EmoCon) and Human Emotion Recognition using Physiological Signals (CAT- EEG-EA-K-EmoCon) respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.